首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2003年   3篇
  2001年   4篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1989年   2篇
  1986年   2篇
  1977年   2篇
  1960年   4篇
  1959年   2篇
  1957年   2篇
  1953年   3篇
  1952年   1篇
  1947年   2篇
  1945年   1篇
  1940年   2篇
  1939年   1篇
  1938年   4篇
  1937年   2篇
  1936年   9篇
  1935年   5篇
  1934年   2篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1930年   2篇
  1929年   7篇
  1927年   1篇
  1926年   1篇
  1924年   2篇
  1923年   3篇
  1922年   1篇
  1920年   2篇
  1919年   1篇
  1918年   3篇
  1916年   1篇
  1914年   1篇
  1910年   2篇
  1909年   1篇
  1907年   1篇
排序方式: 共有158条查询结果,搜索用时 93 毫秒
1.
2.
Epidemiological evidence suggests that hypertension and coronary heart disease are programmed by exposure to a poor diet during intrauterine life. It has been proposed that the prenatal environment may exert an adverse effect on the development of the kidney and hence later control of blood pressure. These assertions are supported by animal experiments. In the rat, fetal exposure to a maternal low protein diet is associated with disproportionate patterns of fetal growth and later elevation of blood pressure. Pregnant female rats were fed control (18% casein) or low protein diets throughout pregnancy, or during specific periods. Nephron number was determined at day 20 gestation, full term and 4 weeks of age. Exposure to low protein throughout gestation, or in mid-late gestation increased total nephron number at day 20. By term nephron number was reduced, relative to controls, in rats that were undernourished between days 8-14 or 15-22 gestation. At 4 weeks postnatally rats exposed to low protein throughout fetal life had a reduced (13%) nephron complement and blood pressures 13 mmHg above control animals. Lower renal size and elevated blood pressure persisted to 19 weeks of age, at which time glomerular filtration rate was normal. The data are consistent with the hypothesis that maternal undernutrition may programme the renal nephron number and hence impact upon adult blood pressure and the development of renal disease.  相似文献   
3.
Nutritional programming of blood pressure and renal morphology   总被引:5,自引:0,他引:5  
A range of epidemiological evidence from several diverse populations, supports the hypothesis that risk of essential hypertension, coronary heart disease and non-insulin dependent diabetes is, in part, programmed by intrauterine nutritional status. Animal models developed to investigate the mechanisms that are responsible for such programming are becoming more important as challenges to the epidemiological data become more robust. With strong evidence from animal studies it is now widely accepted that maternal nutritional status in pregnancy is a major programming influence upon the fetus. This paper considers the hypothesis that renal structure and function are determined by prenatal nutrition and that this is a key mechanism in the programming of hypertension. The feeding of low protein diets or other insults in pregnancy that have an impact upon the development of cardiovascular functions, also appears to impact upon nephron number. In the sheep nephron number is related to weight at birth following nutrient restriction, and in the rat low protein diets reduce nephron number by approximately 30%. However, it is possible that hypertension and reduced renal reserve merely coincide and are not causally associated. A study of rats fed low protein diets supplemented with additional nitrogen sources found that whilst only glycine could reverse the hypertensive effects of low protein diets, all supplements could normalise nephron number. The evidence thus suggests that prenatal undernutrition may programme renal structure in later life, but that renal programming is not one of the primary mechanisms leading to hypertension.  相似文献   
4.
5.
6.
Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances.  相似文献   
7.
Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer''s disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.  相似文献   
8.
Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common "gatekeepers" which may drive nutritional programming.Both protein and iron deficiency in utero reduced the nephron complement in adult male Wistar and Rowett Hooded Lister rats (P<0.05). This occurred in the absence of damage to the glomerular ultrastructure. Microarray, proteomic and pathway analyses identified diet-specific and strain-specific gatekeeper genes, proteins and processes which shared a common association with the regulation of the cell cycle, especially the G1/S and G2/M checkpoints, and cytoskeletal remodelling. A cell cycle-specific PCR array confirmed the down-regulation of cyclins with protein restriction and the up-regulation of apoptotic genes with iron deficiency.The timing and experimental design of this study have been carefully controlled to isolate the common molecular mechanisms which may initiate the sequelae of events involved in nutritional programming of embryonic development. We propose that despite differences in the individual genes and proteins affected in each strain and with each diet, the general response to nutrient deficiency in utero is perturbation of the cell cycle, at the level of interaction with the cytoskeleton and the mitotic checkpoints, thereby diminishing control over the integrity of DNA which is allowed to replicate. These findings offer novel insight into the primary causes and mechanisms leading to the pathologies which have been identified by previous programming studies.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号