首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   1篇
  2021年   1篇
  2017年   1篇
  2016年   3篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2004年   1篇
  2003年   6篇
  2002年   5篇
  2000年   5篇
  1993年   1篇
  1990年   2篇
  1988年   2篇
  1985年   1篇
  1981年   2篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
1.
The use of hormone replacement to support limb regeneration in hypophysectomized newts has been the subject of many investigations. Growth hormone, as well as prolactin (PL) in combination with exogenously supplied thyroxine, have all been shown to he effective. However, the bovine growth hormone used to support limb regeneration was contaminated by prolactin and thyroidstimulating hormone (TSH). The present investigation evaluates the significance of (1) prolactin contamination and (2) endogenous thyroxine synthesis resulting from TSH contamination on limb regeneration in hypophysectomized newts. The effect of supplying exogenous thyroxine was also evaluated. Our studies showed that when hypophysectomized newts were injected with contamination levels of PL and TSH, regeneration occurred, suggesting that the newt's thyroid synthesized sufficient thyroxine to support a prolactin-thyroxine synergism. The endogenous thyroxine was synthesized by thyroid glands that were indistinguishable from those of saline-injected, hypophysectomized controls.  相似文献   
2.
3.
It is well documented that growth hormone (GH) replacement therapy will restore normal limb regeneration to hypophysectomized adult newts. However, it is also known that the GH preparations used in previous reports were contaminated by other pituitary hormones shown to support regeneration when administered free of GH. The recent availability of bioengineered human GH was studied for its ability to restore the regenerative capacity to hypophysectomized newts. Five days posthypophysectomy adult newts were subject to forelimb amputation distal to the elbow. Animals were divided into three groups (n greater than 20). Each received one of three GH preparations: pituitary-derived bovine GH, pituitary-derived human GH, or bioengineered human GH. GH was administered via intraperitoneal injection (0.029 IU/50 microliters) on alternate days for either the first 5 days (total of 3 injections) or for 35 days (total of 18 injections). Pituitary-intact and hypophysectomized control newts were subjected to forelimb amputation and injected with hormone diluent. All newts that received GH demonstrated normal limb regeneration to the early digitiform stage by 35 days postamputation. None of the hypophysectomized control newts showed any evidence of regeneration. We conclude that GH alone can restore the ability to undergo normal limb regeneration to hypophysectomized newts.  相似文献   
4.
5.
Untreated adult newts do not undergo normal limb regeneration following hypohysectomy. A fibrocellular dermal barrier (cicatrix) atypically forms between the apical epithelium and the underlying mesenchymal tissues. Historically, continuous administration of growth hormone or of prolactin in combination with thyroxine restored regenerative capacity to these newts. In a previous investigation, we demonstrated that the initial effect of these two hormone treatments, when administered on alternate days to hypophysectomized newts beginning eight days post-amputation, was to facilitate the erosion of the fibrocellular barrier and establish the epithelial mesenchymal interface that is observed in a regenerating limb. The present investigation was designed to evaluate the necessity of continuous hormone therapy to maintain limb regeneration in hypophysectomized newts. One, two, or three injections of growth hormone or of prolactin in combination with thyroxine was administered on successive alternate days to hypophysectomized newts either immediately following limb amputation (ID) or beginning eight days post-amputation (DD). The ID and DD newts receiving one, two, or three injections of growth hormone showed evidence of regeneration to the digitiform stage by day 30 post-amputation, while those receiving prolactin and thyroxine underwent wound healing. While both hormone treatments initially promoted a dermis-free apical epithelium, only hypophysectomized newts that had received growth hormone were able to continue regenerating. We have, therefore, concluded that discontinuous growth hormone therapy is sufficient to initiate and maintain the conducive environment for limb regeneration to advanced stages in the hypophysectomized newt. While initiating this process, prolactin and thyroxine therapy on a discontinuous regime does not maintain regeneration. The direct and indirect role of growth hormone in supporting limb regeneration in normal and hypophysectomized newts is discussed.  相似文献   
6.
7.
The dependence of the degree of fluorene and fluoranthene degradation by the fungus Pleurotus ostreatus D1 on the culture medium composition has been studied. Polycyclic aromatic hydrocarbons (PAHs) have been transformed in Kirk’s medium (under conditions of laccase production) with the formation of a quinone metabolite and 9-fluorenone upon the use of fluoranthene and fluorene as substrates, respectively. More complete degradation with the formation of an intermediate metabolite, phthalic acid that has undergone subsequent utilization, has occurred in basidiomycete-rich medium (under the production of both laccase and versatile peroxidase). The formation of phthalic acid as a metabolite of fluoranthene degradation by lignolytic fungi has been revealed for the first time. The data allow the supposition that both extracellular laccase and laccase on the mycelium surface can participate in the initial stages of PAH metabolism, while versatile peroxidase is necessary for the oxidation of the formed metabolites. A scheme of fluorene metabolism by Pleurotus ostreatus D1 is suggested.  相似文献   
8.
The consistent application of homogenization and enzymatic treatment is required to obtain protoplasts from the basidiomycete fungus Trametes hirsuta. The maximum yield of protoplasts (~2.5 × 107/mL) was achieved when mycelium in the exponential growth phase (60 h) was used. The maximum stability was observed in MES+ buffer during 4 h of incubation; in this case the titer reduction was 5–7%. Studies of the effect of antioxidants with different antioxidant capacities expressed in mmol equivalents of Trolox (ascorbate, 0.99; α-tocopherol, 1.0; β-carotene, 2.14; quercetin, 3.98) indicated that the yield of protoplasts was increased in the presence of β-carotene and quercetin by 18–24%. The studied antioxidants did not affect the protoplasts stability. The degree of regeneration of protoplasts correlated with the antioxidant capacity of the studied antioxidants and was maximal (0.4%) in the presence of β-carotene and quercetin; it was 0.1% in the presence of MES+. The rate of protoplast growth was two times higher in the presence of β-carotene and quercetin.  相似文献   
9.
10.
White rot fungi (Coriolus hirsutus, Coriolus zonatus, and Cerrena maxima from the collection of the Komarov Botanical Institute of the Russian Academy of Sciences) and filamentous fungi (Mycelia sterilia INBI 2-26 and Trichoderma reesei 6/16) were grown on oat straw-based liquid and solid media, as well as in a bench-scale reactor, either individually or as co-cultures. All fungi grew well on solid agar medium supplemented with powdered oat straw as the sole carbon source. Under these conditions, the mould Trichoderma reesei fully suppressed the growth of all basidiomycetes studied; conversely, Mycelia sterilia neither affected the development of any of the cultures, nor did it show any substantial susceptibility to suppression by their presence. Pure solid cultures of basidiomycetes, as well as the co-culture of Coriolus hirsutus and Cerrena maxima caused a notable bleaching of the oat straw during its consumption. When grown on the surface of oat straw-based liquid medium, the basidiomycetes consumed up to 40% polysaccharides without measurable lignin degradation (a concomitant process). Under these conditions, Mycelia sterilia decomposed no more than 25% lignin in 60 days, but this was observed only after polysaccharide exhaustion and biomass accumulation. In contrast, during solid state straw fermentation, white rot fungi consumed up to 75% cellulose and 55% lignin in 83 days (C. zonarus), whereas the corresponding consumption levels for co-cultures of Mycelia sterilia and Trichoderma reesei equaled 70 and 45%, respectively (total loss of dry weight ranged from 55 to 60%). Carbon dioxide-monitored solid-state fermentation of oat straw by the co-culture of filamentous fungi was successfully performed in an aerated bench-scale reactor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号