首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   5篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  1997年   1篇
  1992年   1篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
排序方式: 共有32条查询结果,搜索用时 203 毫秒
1.
The development and the differentiation of the ventricular system of the brain of tadpoles of the South African Clawed Toad, Xenopus laevis (Daudin), is studied by light microscopy (stages 45 to 66) and scanning and transmission electron microscopy (stages 50 to 66). Special interest is paid to the ependymal structures of the foramen of Monroe, the ventricles of the diencephalon, the mesencephalon, and the rhombencephalon, and to the ependymal of the central canal and the choroid plexus of the third and fourth ventricle. At early developmental stages the lower two thirds of the ventricles are dominated by blebs, cytoplasmatic protrusions of the ependymal cells. During the development they become reduced and replaced by cilia. The number of cilia and microvilli increases strongly towards the end of the metamorphosis. The surface structures demonstrated by scanning electron microscopy are discussed in respect to morphology and physiology.  相似文献   
2.
3.
The angioarchitecture of the neural stalk and the encephaloposthypophysial portal system of the hypophysis of the toad, Bufo bufo (L.), was studied using three different methods. The neural stalk is mainly supplied by branches of the arteria infundibularis superficialis which form a widemeshed vascular network. Dorsally this network continues into the plexus of the pars nervosa. The vascularization of the pars nervosa is made up of the encephalo-posthypophysial portal system. This portal system consists of a hypothalamic branch (=portion), a mesencephalic and a mesencephalicbulbar branch (=portion). The hypothalamic branch was found to drain the pars ventralis of the tuber cinereum as well as more dorsal regions of the diencephalon. The mesencephalic-bulbar trunk enters the hypothalamic branch. The resulting common stem of the encephalo-posthypophysial portal vein the curves around the retroinfundibular communicating artery, crosses its ventral side and runs caudally. The secondary capillary plexus of the pars nervosa is characterized by well defined capillary plexus of the pars nervosa is characterized by well defined capillary networks which are located at the periphery of the parenchyma of the pars nervosa, thus forming a rostral, dorsal and ventro-caudal net. The central region of the parenchyma of the pars nervosa is supplied only by main branches of the encephalo-postpophysial portal vein. The venous drainage of the pars nervosa is via the vena hypophysea transversa.  相似文献   
4.
Studies on the amphibian respiratory tract microvascular anatomy are few. Using scanning electron microscopy (SEM) of vascular corrosion casts (VCCs) and light microscopy of perfusion‐fixed tissue sections, we studied the bronchial microvascular anatomy in the adult South African Clawed Toad, Xenopus laevis Daudin. Histomorphology showed that the bronchial wall consists (from luminal to abluminal) of squamous epithelium, subepithelial capillary bed, cartilage rings or cartilage plates, a layer of dense connective tissue, a layer of smooth muscle cells, and squamous epithelium (serosa). SEM of VCCs reveals that bilaterally a ventral, a dorsal (Ø 77.21 ± 7.61 μm), and a caudal bronchial artery supply the bronchial subepithelial capillary bed. The ventral bronchial artery has 3–4 branching orders (interbranching distances: 506.3 ± 392.12 μm; branching angles of first‐ and second‐order bifurcations: 24.60 ± 10.24° and 29.59 ± 14.3°). Casts of bronchial arteries display imprints of flow dividers and sphincters. Cranial and caudal bronchial veins (Ø 154.78 ± 49.68 μm) drain into pulmonary veins. They lack microvenous valves. The location of the dense subepithelial capillary meshwork just beneath the thin squamous bronchial epithelium and its drainage into the pulmonary veins make it likely that in Xenopus, bronchi assist in aerial gas exchange.  相似文献   
5.
We studied the opisthonephric (mesonephric) kidneys of adult male and female Xenopus laevis using scanning electron microscopy (SEM) of vascular corrosion casts and light microscopy of paraplast embedded tissue sections. Both techniques displayed glomeruli from ventral to mid-dorsal regions of the kidneys with single glomeruli located dorsally close beneath the renal capsule. Glomeruli in general were fed by a single afferent arteriole and drained via a single thinner efferent arteriole into peritubular vessels. Light microscopy and SEM of vascular corrosion casts revealed sphincters at the origins of afferent arterioles, which arose closely, spaced from their parent renal arteries. The second source of renal blood supply via renal portal veins varied interindividually in branching patterns with vessels showing up to five branching orders before they became peritubular vessels. Main trunks and their first- and second-order branches revealed clear longish endothelial cell nuclei imprint patterns oriented parallel to the vessels longitudinal axis, a pattern characteristic for arteries. Peritubular vessels had irregular contours and were never seen as clear cylindrical structures. They ran rather parallel, anastomosed with neighbors and changed into renal venules and veins, which finally emptied into the ventrally located posterior caval vein. A third source of blood supply of the peritubular vessels by straight terminal portions of renal arteries (vasa recta) was not found.  相似文献   
6.
Pex14p is a member of the protein linkage map of Pex5p.   总被引:15,自引:3,他引:12       下载免费PDF全文
To identify members of the translocation machinery for peroxisomal proteins, we made use of the two-hybrid system to establish a protein linkage map centered around Pex5p from Saccharomyces cerevisiae, the receptor for the C-terminal peroxisomal targeting signal (PTS1). Among the five interaction partners identified, Pex14p was found to be induced under conditions allowing peroxisome proliferation. Deletion of the corresponding gene resulted in the inability of yeast cells to grow on oleate as well as the absence of peroxisomal structures. The PEX14 gene product of approximately 38 kDa was biochemically and ultrastructurally demonstrated to be a peroxisomal membrane protein, despite the lack of a membrane-spanning domain. This protein was shown to interact with itself, with Pex13p and with both PTS receptors, Pex5p and Pex7p, indicating a central function for the import of peroxisomal matrix proteins, either as a docking protein or as a releasing factor at the organellar membrane.  相似文献   
7.
8.
Lametschwandtner, A., Albrecht, U., Adam, H. 1980. The vascularization of the anuran brain. Olfactory bulb and telencephalon. A scanning electron microscopical study of vascular corrosion casts. (Department of Zoology, University of Salzburg, Austria.) — Acta zool. (Stockh.) 61(4): 225–238. The vascularization of the olfactory bulb and the telencephalon of the anuran brain is studied by means of scanning electron microscopy of vascular corrosion casts.—The olfactory bulb is supplied via a terminal branch of the ramus hemisphaerii medialis ventralis, while the drainage is via the lateral telencephalic vein. The vascular plexus which caps the olfactory bulb shows “basket-like” vascular formations facing the rostral olfactory bulb. This plexus is supplied via two sources which are a) terminal branches of the ramus hemisphaerii medialis ventralis and b) a branch of the inner carotid artery. — In the telencephalon the vascular pattern of medial and lateral cortex, the striatum, the septum, and the amygdala are described. It is demonstrated that in the cerebral cortex of the anuran brain the centrifugal blood flow is not present in that strictness found in the other parts of the brain. The arterial supply is via the ramus hemisphaerii medialis ventralis and the posterior telencephalic artery (ramus hemisphaerii medialis dorsalis) and their branches as well as by branches of the preoptic artery. The venous drainage of the telencephalon is by the lateral telencephalic vein.  相似文献   
9.
Albrecht, U., Lametschwandtner, A., Adam, H. 1980. The vascularization of the anuran brain. Rhombencephalon and medulla spinalis. A scanning electron microscopical study of vascular corrosion casts. (Department of Zoology, University of Salzburg, Austria.) — Acta zool. (Stockh.) 61 (4): 239–246. The vascularization of the rhombencephalon and the medulla spinalis of Bufo bufo (L.) is demonstrated by scanning electron microscopy of vascular corrosion casts. The arterial supply of the rhombencephalon is performed by central arteries. The same is shown in the medulla spinalis. The venous pathways are represented by venae craniales occipitales and by a posterior and bulbar group of the encephaloposthypophysial portal vein, by veins draining into the venae craniales occipitales, by venae spinales ventrales (for the rostral regions of the medulla) and by venae spinales laterales (in the caudal medulla). In the regions examined so far a centrifugal course of the arterial vessels is reported.  相似文献   
10.
Microcorrosion casts of the renal vascular system of tadpoles of the Clawed Frog, Xenopus laevis, were observed by scanning electron microscopy. Glomerular differentiation was studied qualitatively and quantitatively during developmental stages 56-66 (metamorphic climax). The general structure of the renal vascular system corresponds to the pattern commonly found in anurans; however, the arterial supply has conspicuous connecting vessels that supply groups of glomeruli. In the dorsal part of the kidney, qualitative differentiation of glomerular structures precedes quantitative growth. The ventral part of the kidney has larger, well-developed renal corpuscles of nearly adult appearance. Four developmental stages of glomerulogenesis are distinguished morphologically and their glomerular and vascular growth is analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号