首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   12篇
  2021年   2篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   6篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1990年   4篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1969年   1篇
  1968年   4篇
  1967年   3篇
  1966年   1篇
排序方式: 共有112条查询结果,搜索用时 265 毫秒
1.
2.
In the presented study the influence of dehulling rapeseed on the composition of rapeseed meal (RM) and rapeseed cake (RC) and on its feed value for piglets and growing-finishing pigs was investigated. Before withdrawal of oil, rapeseed (variety Express) was dehulled applying a procedure developed by SKET GmbH Magdeburg and the Section Food-Technology of the University Essen. The steps of the dehulling procedure were described. For RM the oil was removed by the prepress-solvent procedure till a crude fat content of 2.1% in DM. RC was produced by pressing only resulting approximately 13% crude fat in DM. The RM and RC from not dehulled (ND) and dehulled (D) rapeseed were examined analytically. Crude nutrients, sugar and fibre substances, amino acids, some minerals and trace elements, fatty acids, glucosinolates and sinapine, and phytate were determined. By dehulling the seed the crude fibre content was decreased in RM and RC by approximately 40%. The ADF content declined by 35 and 39%, and the NDF content by 28% and 40% in RM and RC, respectively. The decrease in ADL content amounted to 50% and 65% for RM and RC, respectively. On the other hand, the CP content of RM and RC was increased by 7% and 13%, respectively, by dehulling the seed while the amino acid content of rape protein increased only slightly. The contents of glucosinolates and sinapine were also increased by dehulling, while the contents of phytate and phytate P were decreased. In digestibility and balance experiments with piglets and intact hybrid breeds of growing-finishing pigs, the digestibility of organic matter and of crude nutrients and the contents of digestible energy and metabolizable energy were estimated. Furthermore, the precaecal digestibility of crude nutrients and amino acids was determined with fistulated mini-pigs. By dehulling the seeds the digestibility of organic matter from RM and RC was improved in piglets and adult pigs by approximately 10%, and the ME contents increased by 13-15%. The precaecal digestibility of the sum of amino acids was increased by approximately 3 and 6 units in RM and RC, respectively. The precaecal digestibility of lysine in RM and RC reached that of soybean oil meal from not dehulled beans.  相似文献   
3.
4.
5.
mRNA stability is a major determinant of inflammatory gene expression. Rapid degradation of interleukin-8 (IL-8) mRNA is imposed by a bipartite AU-rich element (ARE) in the 3′ untranslated region (R. Winzen et al., Mol. Cell. Biol. 24:4835-4847, 2004). Small interfering RNA-mediated knockdown of the ARE-binding protein KSRP resulted in stabilization of IL-8 mRNA or of a β-globin reporter mRNA containing the IL-8 ARE. Rapid deadenylation was impaired, indicating a crucial role for KSRP in this step of mRNA degradation. The two IL-8 ARE domains both contribute to interaction with KSRP, corresponding to the importance of both domains for rapid degradation. Exposure to the inflammatory cytokine IL-1 has been shown to stabilize IL-8 mRNA through p38 mitogen-activated protein (MAP) kinase and MK2. IL-1 treatment impaired the interaction of KSRP with the IL-8 ARE in a manner dependent on p38 MAP kinase but apparently independent of MK2. Instead, evidence that TTP, a target of MK2, can also destabilize the IL-8 ARE reporter mRNA is presented. In a comprehensive approach to identify mRNAs controlled by KSRP, two criteria were evaluated by microarray analysis of (i) association of mRNAs with KSRP in pulldown assays and (ii) increased amounts in KSRP knockdown cells. According to both criteria, a group of 100 mRNAs is controlled by KSRP, many of which are unstable and encode proteins involved in inflammation. These results indicate that KSRP functions as a limiting factor in inflammatory gene expression.  相似文献   
6.
FasL and gamma interferon (IFN-gamma) are produced by activated T cells and NK cells and synergistically induce apoptosis. Although both cytokines can also elicit proinflammatory responses, a possible cross talk of these ligands with respect to nonapoptotic signaling has been poorly addressed. Here, we show that IFN-gamma sensitizes KB cells for apoptosis induction by facilitating death-inducing signaling complex (DISC)-mediated caspase 8 processing. Moreover, after protection against death receptor-induced apoptosis by caspase inhibition or Bcl2 overexpression, IFN-gamma also sensitized for Fas- and TRAIL death receptor-mediated NF-kappaB activation leading to synergistic upregulation of a variety of proinflammatory genes. In contrast, Fas-mediated activation of JNK, p38, and p42/44 occurred essentially independent from IFN-gamma sensitization, indicating that the apoptosis- and NF-kappaB-related FasL-IFN-gamma cross talk was not due to a simple global enhancement of Fas signaling. Overexpression of FLIP(L) and FLIP(S) inhibited Fas- as well as TRAIL-mediated NF-kappaB activation and apoptosis induction in IFN-gamma-primed cells suggesting that both responses are coregulated at the level of the DISC.  相似文献   
7.
8.
Streptococcus pneumoniae is the major pathogen of community-acquired pneumonia. The respiratory epithelium constitutes the first line of defense against invading lung pathogens, including pneumococci. We analyzed the involvement of Toll-like receptors (TLR) and Rho-GTPase signaling in the activation of human lung epithelial cells by pneumococci. S. pneumoniae induced release of interleukin-8 (IL-8) by human bronchial epithelial cell line BEAS-2B. Specific inhibition of Rac1 by Nsc23766 or a dominant-negative mutant of Rac1 strongly reduced cytokine release. In addition, pneumococci-related cell activation (IL-8 release, NF-kappaB-activation) depended on MyD88, phosphatidylinositol 3-kinase, and Cdc42 but not on RhoA. Pneumococci enhanced TLR1 and TLR2 mRNA expression in BEAS-2B cells, whereas TLR4 and TLR6 expression was constitutively high. TLR1 and 2 synergistically recognized pneumococci in cotransfection experiments. TLR4, TLR6, LPS-binding protein, and CD14 seem not to be involved in pneumococci-dependent cell activation. At the IL-8 gene promoter, recruitment of phosphorylated NF-kappaB subunit p65 was blocked by inhibition of Rac1, whereas binding of the phosphorylated activator protein-1 subunit c-Jun to the promoter was not diminished. In summary, these results suggest that S. pneumoniae activate human epithelial cells by TLR1/2 and a phosphatidylinositol 3-kinase- and Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter.  相似文献   
9.
10.
The mechanism by which YopP simultaneously inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB pathways has been elusive. Ectopic expression of YopP inhibits the activity and ubiquitination of a complex consisting of overexpressed TGF-beta-activated kinase 1 (TAK1) and its subunit TAK1-binding protein (TAB)1, but not of MEK kinase 1. YopP, but not the catalytically inactive mutant YopP(C172A), also suppresses basal and interleukin-1-inducible activation of endogenous TAK1, TAB1 and TAB2. YopP does not affect the interaction of TAK1, TAB1 and TAB2 but inhibits autophosphorylation of TAK1 at Thr 187 and phosphorylation of TAB1 at Ser 438. Glutathione S-transferase-tagged YopP (GST-YopP) binds to MAPK kinase (MAPKK)4 and TAB1 but not to TAK1 or TAB2 in vitro. Furthermore, YopP in synergy with a previously described negative regulatory feedback loop inhibits TAK1 by MAPKK6-p38-mediated TAB1 phosphorylation. Taken together, these data strongly suggest that YopP binds to TAB1 and directly inhibits TAK1 activity by affecting constitutive TAK1 and TAB1 ubiquitination that is required for autoactivation of TAK1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号