首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2015年   2篇
  2011年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1957年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The processes of local adaptation and ecological speciation can be better understood by studying the genetic background of life‐history decisions. The sex chromosomes host genes for many population differences in the Lepidoptera and therefore the inheritance of diapause determination in the butterfly Polygonia c‐album may be hypothesized to be sex‐linked. In the present study, Polygonia c‐album (L.) from Spain and Sweden and hybrid offspring are raised under an LD 17 : 7 h photocycle that induces most pure Swedish individuals to develop into the diapausing dark morph and most pure Spanish individuals into the light and directly‐developing morph. If inheritance of the daylength threshold for diapause is X‐linked, as is known to be the case for host‐plant preferences, females should follow the developmental path of their male parents' populations. However, female hybrids instead have a diapause propensity intermediate to that of their parental stocks and, consequentially, diapause determination is not X‐linked. However, male hybrids eclose as the diapausing morph to a higher extent than females and, moreover, this pattern is more pronounced in the Spanish female × Swedish male cross than in the reciprocal cross. Hence, it is concluded that the genetic determination of the critical daylength for diapause is mainly autosomal but with some influence of sex‐linked genes and/or parental effects, possibly as an effect of the importance of protandry for males. Such sex effects could provide a starting point for the evolution of population differences inherited on the sex chromosomes.  相似文献   
2.
Evolutionary divergence in behavioural traits related to mating may represent the initial stage of speciation. Direct selective forces are usually invoked to explain divergence in mate‐recognition traits, often neglecting a role for neutral processes or concomitant differentiation in ecological traits. We adopted a multi‐trait approach to obtain a deeper understanding of the mechanisms behind allopatric divergence in the Amazonian frog, Allobates femoralis. We tested the null hypothesis that geographic distance between populations correlates with genetic and phenotypic divergence, and compared divergence between mate‐recognition (acoustic) and ecological (coloration, body‐shape) traits. We quantified geographic variation in 39 phenotypic traits and a mitochondrial DNA marker among 125 individuals representing eight populations. Geographic variation in acoustic traits was pronounced and tracked the spatial genetic variation, which appeared to be neutral. Thus, the evolution of acoustic traits tracked the shared history of the populations, which is unexpected for pan‐Amazonian taxa or for mate‐recognition traits. Divergence in coloration appeared uncorrelated with genetic distance, and might be partly attributed to local selective pressures, and perhaps to Batesian mimicry. Divergence in body‐shape traits was low. The results obtained depict a complex evolutionary scenario and emphasize the importance of considering multiple traits when disentangling the forces behind allopatric divergence. ©2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 826–838.  相似文献   
3.
Cyanobacterial chemical warfare affects zooplankton community composition   总被引:5,自引:0,他引:5  
1. Toxic algal blooms widely affect our use of water resources both with respect to drinking water and recreation. However, it is not only humans, but also organisms living in freshwater and marine ecosystems that may be affected by algal toxins. 2. In order to assess if cyanobacterial toxins affect the composition of natural zooplankton communities, we quantified the temporal fluctuations in microcystin concentration and zooplankton community composition in six lakes. 3. Microcystin concentrations generally showed a bimodal pattern with peaks in early summer and in autumn, and total zooplankton biomass was negatively correlated with microcystin concentrations. Separating the zooplankton assemblages into finer taxonomic groups revealed that high microcystin concentrations were negatively correlated with Daphnia and calanoid copepods, but positively correlated with small, relatively inefficient phytoplankton feeders, such as cyclopoid copepods, Bosmina and rotifers. 4. In a complementary, mechanistic laboratory experiment using the natural phytoplankton communities from the six lakes, we showed that changes in in situ levels of microcystin were coupled with reduced adult size and diminished juvenile biomass in Daphnia. 5. We argue that in eutrophic lakes, large unselective herbivores, such as Daphnia, are ‘sandwiched’ between high fish predation and toxic food (cyanobacteria). In combination, these two mechanisms may explain why the zooplankton community in eutrophic lakes generally comprise small forms (e.g. rotifers and Bosmina) and selective raptorial feeders, such as cyclopoid copepods, whereas large, unselective herbivores, such as Daphnia, are rare. Hence, this cyanobacterial chemical warfare against herbivores may add to our knowledge on population and community dynamics among zooplankton in eutrophic systems.  相似文献   
4.
1. In the study of the evolution of insect–host plant interactions, important information is provided by host ranking correspondences among female preference, offspring preference, and offspring performance. Here, we contrast such patterns in two polyphagous sister species in the butterfly family Nymphalidae, the Nearctic Polygonia faunus, and the Palearctic P. c‐album. 2. These two species have similar host ranges, but according to the literature P. faunus does not use the ancestral host plant clade – the ‘urticalean rosids’. Comparisons of the species can thus test the effects of a change in insect–plant associations over a long time scale. Cage experiments confirmed that P. faunus females avoid laying eggs on Urtica dioica (the preferred host of P. c‐album), instead preferring Salix, Betula, and Ribes. 3. However, newly hatched larvae of both species readily accept and grow well on U. dioica, supporting the general theory that evolutionary changes in host range are initiated through shifts in female host preferences, whereas larvae are more conservative and also can retain the capacity to perform well on ancestral hosts over long time spans. 4. Similar rankings of host plants among female preference, offspring preference, and offspring performance were observed in P. c‐album but not in P. faunus. This is probably a result of vestiges of larval adaptations to the lost ancestral host taxon in the latter species. 5. Female and larval preferences seem to be largely free to evolve independently, and consequently larval preferences warrant more attention.  相似文献   
5.
Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, a chain), and CDlla (LFA-1, a chain) on mouse oocytes, and pre- and peri-implantation stage embryos was examined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at the oocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM, also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On the other hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at the compacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophecto-derm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remained significantly expressed throughout and after blastocyst hatching was expressed on the polar trophecto-derm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression of both  相似文献   
6.
Abstract 1. The possible effect of juvenile imprinting or ‘chemical legacy’ on the subsequent oviposition – often called the ‘Hopkins’ host selection principle’– has been a controversial but recurrent theme in the literature on host‐plant preference. While it appears possible in principle, experimental support for the hypothesis is equivocal. The present study points out that it is also important to consider its theoretical implications, and asks under what circumstances, if any, it should be favoured by natural selection. 2. Following this reasoning, it is predicted that host preference in the polyphagous butterfly Polygonia c‐album L. (Lepidoptera, Nymphalidae) should not be influenced by larval environment. This was tested by rearing larvae on three natural host plants: the high‐ranked Urtica dioica and the medium‐ranked Salix cinerea and Ribes uva‐crispa, and exposing the naive females to oviposition choices involving the same set of plants. 3. It was found that larval host plant had no effect on oviposition decisions of the adult female. Hence, the Hopkins’ host selection principle does not seem to be applicable in this species. 4. Based on recent insights on how accuracy of environmental versus genetic information should affect the control of developmental switches, the conditions that could favour the use of juvenile cues in oviposition decisions are discussed. Although the Hopkins’ host selection hypothesis cannot be completely ruled out, we argue that the circumstances required for it to be adaptive are so specific that it should not be invoked as a general hypothesis for host selection in plant‐feeding insects.  相似文献   
7.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   
8.
9.
The cryptic habits of subterranean termites restricts detailed analysis of their foraging patterns in situ, but the process is evidently dominated by tunnel constructions connecting the nest with woody resources discovered within the territory of each colony. In this study, tunnel formation and orientation were studied experimentally in the termite Reticulitermes grassei (Clement), using 2-dimensional laboratory foraging arenas con- taining fine sand as the substratum. The building of exploratory tunnels over a 10-day period and the geometry of the resulting network are described. Fractal analysis showed that tunnel geometry had a fractal dimension, regardless of the total length tunnelled whether foragers encountered the food source or not. The bulk density of the sand in the arenas affected the distances tunnelled, with higher density reducing construction, but did not affect tunnel geometry. Tunnels were not discernibly orientated with respect to the positioning of the food source, even in a situation where termites had failed to find the food source at a distance of less than 50 mm, suggesting that volatiles from wood are not attractants.  相似文献   
10.
1. The patterns of multiple paternity among the progeny of females are key properties of genetic mating systems. Female multiple mating should evolve due to direct or indirect benefits, but it may also partly be driven by the encounter rate with different potential mates. 2. In this study this hypothesis was experimentally tested in the European earwig (Forficula auricularia L.) by establishing experimental mating groups that differed in the number of males and females (i.e. density). The number of sires and mean sibling relatedness in each clutch were estimated using microsatellite‐based paternity analysis. 3. As predicted, the mean number of sires per clutch was significantly increased, and sibling relatedness decreased, in the higher density treatment where more potential male mates were available. This change was less than proportional to the number of males in the mating groups, indicating that mechanisms limiting multiple paternity in large mating groups were involved. There were no significant relationships between female reproductive success or male siring success with morphology (body size, weight, and forceps size). 4. The present results show that multiple paternity in F. auricularia clutches is partly determined by the availability of male mates and suggest that this effect is modulated by mechanisms in males and/or females that limit multiple paternity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号