首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   7篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1987年   1篇
  1969年   1篇
排序方式: 共有38条查询结果,搜索用时 24 毫秒
1.
The Sup35p protein of yeast Saccharomyces cerevisiae is a homologue of the polypeptide chain release factor 3 (eRF3) of higher eukaryotes. It has been suggested that this protein may adopt a specific self-propagating conformation, similar to mammalian prions, giving rise to the [psi+] nonsense suppressor determinant, inherited in a non-Mendelian fashion. Here we present data confirming the prion-like nature of [psi+]. We show that Sup35p molecules interact with each other through their N-terminal domains in [psi+], but not [psi-] cells. This interaction is critical for [psi+] propagation, since its disruption leads to a loss of [psi+]. Similarly to mammalian prions, in [psi+] cells Sup35p forms high molecular weight aggregates, accumulating most of this protein. The aggregation inhibits Sup35p activity leading to a [psi+] nonsense-suppressor phenotype. N-terminally altered Sup35p molecules are unable to interact with the [psi+] Sup35p isoform, remain soluble and improve the translation termination in [psi+] strains, thus causing an antisuppressor phenotype. The overexpression of Hsp104p chaperone protein partially solubilizes Sup35P aggregates in the [psi+] strain, also causing an antisuppressor phenotype. We propose that Hsp104p plays a role in establishing stable [psi+] inheritance by splitting up Sup35p aggregates and thus ensuring equidistribution of the prion-like Sup35p isoform to daughter cells at cell divisions.  相似文献   
2.
SUP35is an omnipotent suppressor gene of Saccharomyces cerevisiae coding for a protein consisting of a C-terminal part similar to the elongation factor EF-1α and a unique N-terminal sequence of 253 amino acids. Twelve truncated versions of the SUP35 gene were generated by the deletion of fragments internal to the coding sequence. Functional studies of these deletion mutants showed that: (i) only the EF-1α-like C-terminal part of the Sup35 protein is essential for the cell viability; (ii) overexpression of either the N-terminal part of the Sup35 protein or the full-length Sup35 protein decreases translational fidelity, resulting in omnipotent suppression and reduced growth of [psi+] strains; (iii) expression of the C-terminal part of the Sup35 protein generates an antisuppressor phenotype; and (iv) both the N- or C-terminal segments of the Sup35 protein can bind to 80S ribosomes. Thus, the data obtained define two domains within the Sup35 protein which are responsible for different functions.  相似文献   
3.
The product of the yeast SUP45 gene (Sup45p) is highly homologous to the Xenopus eukaryote release factor 1 (eRF1), which has release factor activity in vitro. We show, using the two-hybrid system, that in Saccharomyces cerevisiae Sup45p and the product of the SUP35 gene (Sup35p) interact in vivo. The ability of Sup45p C-terminally tagged with (His)6 to specifically precipitate Sup35p from a cell lysate was used to confirm this interaction in vitro. Although overexpression of either the SUP45 or SUP35 genes alone did not reduce the efficiency of codon-specific tRNA nonsense suppression, the simultaneous overexpression of both the SUP35 and SUP45 genes in nonsense suppressor tRNA-containing strains produced an antisuppressor phenotype. These data are consistent with Sup35p and Sup45p forming a complex with release factor properties. Furthermore, overexpression of either Xenopus or human eRF1 (SUP45) genes also resulted in anti-suppression only if that strain was also overexpressing the yeast SUP35 gene. Antisuppression is a characteristic phenotype associated with overexpression of both prokaryote and mitochondrial release factors. We propose that Sup45p and Sup35p interact to form a release factor complex in yeast and that Sup35p, which has GTP binding sequence motifs in its C-terminal domain, provides the GTP hydrolytic activity which is a demonstrated requirement of the eukaryote translation termination reaction.  相似文献   
4.
The data on prions--proteinaceous infectious agents--are briefly summarized. Prions cause several incurable neurodegenerative diseases in mammals, while in lower eukaryotes the prion properties of proteins may be responsible for the inheritance of some phenotypic traits. The novel experimental models for finding and studying proteins with prion properties based on the yeast Saccharomyces cerevisiae and the fungus Podospora anserina are described. The significance of the prion phenomenon for biology and medicine is discussed.  相似文献   
5.
The yeast [PSI+] determinant is related to formation of large prion-like aggregates of the conformationally altered Sup35 protein. Here, we show that these aggregates are composed of small Sup35 prion polymers and associated proteins. In contrast to other protein complexes of yeast lysates, but similarly to amyloid fibers, these polymers are insoluble in SDS at room temperature. The polymers on average are about 30-fold smaller than the aggregates and comprise from 8 to 50 Sup35 monomers. The size of polymers is characteristic of a given [PSI+] variant and differs between the variants. Blocked expression of Hsp104 chaperone causes gradual increase in the size of prion polymers, while inactivation of Hsp104 by guanidine HCl completely stops their fragmentation, which shows indispensability of Hsp104 for this process.  相似文献   
6.

Background

Termination of translation in eukaryotes is controlled by two interacting polypeptide chain release factors, eRFl and eRF3. eRFl recognizes nonsense codons UAA, UAG and UGA, while eRF3 stimulates polypeptide release from the ribosome in a GTP- and eRFl – dependent manner. Recent studies has shown that proteins interacting with these release factors can modulate the efficiency of nonsense codon readthrough.

Results

We have isolated a nonessential yeast gene, which causes suppression of nonsense mutations, being in a multicopy state. This gene encodes a protein designated Itt1p, possessing a zinc finger domain characteristic of the TRIAD proteins of higher eukaryotes. Overexpression of Itt1p decreases the efficiency of translation termination, resulting in the readthrough of all three types of nonsense codons. Itt1p interacts in vitro with both eRFl and eRF3. Overexpression of eRFl, but not of eRF3, abolishes the nonsense suppressor effect of overexpressed Itt1p.

Conclusions

The data obtained demonstrate that Itt1p can modulate the efficiency of translation termination in yeast. This protein possesses a zinc finger domain characteristic of the TRIAD proteins of higher eukaryotes, and this is a first observation of such protein being involved in translation.  相似文献   
7.
8.
The sup2 mutations of the yeast Saccharomyces cerevisiae or plasmid-mediated amplification of the wild type SUP2 gene lead to suppression of different types of nonsense mutations. The Sup2 protein includes a C-terminal region homologous to elongation factor EF-1 alpha and an unique N-terminal region. The SUP2 is an essential gene. The functional role of different regions of the SUP2 gene was investigated, by deleting them without disruption of the reading frame. Such constructs were maintained in yeast on episomal or centromeric plasmids. It was shown that the region, homologous to EF-1 alpha is necessary for viability, while the remaining N-terminal part is nonessential. The region of the first 154 amino acids is necessary and sufficient for the suppressor effect, caused by plasmid-mediated amplification of the SUP2 gene.  相似文献   
9.
More than 20 human diseases are associated with protein misfolding, which results in the appearance of amyloids, fibrillar aggregates of normally soluble proteins. Such diseases are termed amyloid diseases, or amyloidoses. Of these, only prion diseases are transmissible. Amyloids of the prion type are known for lower eukaryotes. While mammalian prions cause neurodegenerative diseases, prions of lower eukaryotes are associated with some nonchromosomally inherited phenotypic traits. The review summarizes the results of studying the prions of yeast Saccharomyces cerevisiae and data obtained using S. cerevisiae as a model to investigate some human amyloidoses such as Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases.  相似文献   
10.
A report on a Joint Cold Spring Harbor Laboratory/Wellcome Trust Conference on 'Prion Biology', Hinxton, UK, 7-11 September 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号