首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2016年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有28条查询结果,搜索用时 640 毫秒
1.
2.
Flavonoids in the leaves of twenty-eight species belonging to the Polygonaceae were studied. Thirty-three kinds of flavonoids were isolated, and eighteen kinds were obtained as crystals. Quercetin glycosides were commonly found in the family. In the quercetin glycosides, 3-O-rhamnoside was most frequently found: 3-O-glucuronide is also distributed widely. Myricetin glycosides were rare. Methylated flavonols were found in some species of the sectionsEchinocaulon andPersicaria. Eleven kinds ofC-glycosylflavones were found in the present survey, andC-glycosylflavones were distributed in all species of the genusRheum and in almost all species of the section Tiniaria.Rumex Acetosella andPolygonum suffultum are exceptional, the former contains flavone glycoside and the latterC-glycosylflavones only, as main components.  相似文献   
3.
Anthocyanins contained in plants belonging to the genusEpimedium in Japan are discussed in this study. Two kinds of anthocyanin, delphinidin 3-p-coumaroyl-sophoroside-5-glucoside (cayratinin) and cyanidin 3-p-coumaroylsophoroside, were identified, and the latter is new to the literature. Only cayratinin was found in the colored petals of theEpimedium species, but cayratinin and cyanidin glucoside were contained in the stems, young leaves and autumn leaves of all the species surveyed.  相似文献   
4.
5.
Three flavonol glycosides were identified in the leaves ofTrillium undulatum. The main glycoside was kaempferol 3-O-α-rhamnosyl-(1→2)-O-[α-rhamnosyl-(1→6)]-β-glucoside; the glycosidic sugars and their linkage pattern were quite different from those of the leaf flavonoids ofT. tschonoskii, T. apetalon, T. Kamtschaticum, T. erectum andT. grandiflorum. Two minor compounds were kaempferol/quercetin 3-O-rutinoside. Part 2 in the series “Studies of the flavonoids of genusTrillium”. For Part 1, see Yoshitamaet al., (1992) Bot. Mag. Tokyo105: 555.  相似文献   
6.
The anthocyanin (GAA) in the epidermis and hair of the leaf ofGynura aurantiaca cv. ‘Purple Passion’ was isolated and identified as cyanidin tetra-glucoside acylated by three molecules of caffeic acid and one molecule of malonic acid. GAA was also isolated from the lower epidermis of the leaf ofG. bicolor DC. GAA showed a very stable reddish purple color from weakly acid to neutral pH region, but the color of the deacylated compound disappeared rapidly in the same region. This indicated that the attached organic acids must play an essential role in the stabilization of the color. Comparison of the profiles of the visible absorption spectra of the intact epidermal peels and cells ofG. aurantiaca andG. bicolor with those of GAA dissolved in various pH solutions suggested that the pH of the epidermal vacuole containing GAA was nearly 4.3. GAA was indistinguishable from the anthocyanin (rubrocinerarin) which we had previously isolated from the purplish red flowers ofSenecio cruentus DC. by means of UV-Vis, NMR and Mass spectra. Deceased  相似文献   
7.
Tyrosine hydroxylase was separated from polyphenol oxidase activity and was highly purified from betacyanin producing callus cultures of Portulaca grandiflora. The purified enzyme catalyzed the formation of DOPA (L-3,4-dihydroxyphenylalanine) from tyrosine and required the pterin compounds (6-methyl-5,6,7,8-tetrahydropterin; 5,6,7,8-tetrahydrobiopterin; 6,7-dimethyl-5,6,7,8-tetrahydropterin) as coenzyme. The K(m) values for tyrosine and 6-methyl-5,6,7,8-tetrahydropterin were 0.5 mM and 0.15 mM, respectively. This enzyme was activated by Fe(2+) and Mn(2+), and inhibited by metal chelating agents.  相似文献   
8.
Three C-glycosylflavones in the leaves of Oxalis corniculata, the host plant of the lycaenid butterfly pale grass blue (Pseudozizeeria maha), were identified as 6-C-glucosylluteolin (isoorientin), 6-C-glucosylapigenin (isovitexin) and isovitexin 7-methyl ether (swertisin). Comparative spectral and HPLC analyses between the leaf extract of the host plants and the wings of P. maha showed selective uptake of the host-plant flavonoid isovitexin to the wings of the butterfly.  相似文献   
9.
In the cyanic flowers ofDahlia variabilis (Asteraceae), an enzyme was demonstrated which catalyzes a glucosyl group transfer from UDP-glucose to the 5 position of anthocyanidin 3-O-glucoside and 3-O-malonylglucoside. The anthocyanin 5-O-glucosyltransferase (5GT) was purified 88-fold at 8 percnt; yield by (NH4)2SO4 precipitation followed by successive chromatography on DEAE-cellulose, Sephacryl S-200 and Mono P. 5GT exhibited a pH optimum at 8.0 and a pI of 4. 2. Its apparent molecular weight calculated from Sephacryl S-200 was 53 kDa. Its activity was stimulated by 2-ME and DTE but strongly inhibited by PCMB and NEM. It was slightly activated by Mg2+ and Ca2+ but strongly inhibited by Hg2+, Zn2+, Cu2+, Mn2+, Fe3+ and Al3+. No effect of EDTA was observed. The apparent Km values for cyanidin 3-O-glucoside, cyanidin 3-O-(6′′-O-malonyl)glucoside and UDP-glucose were 120 μmol/L, 75 μmol/L and 250 μmol/L, respectively. Pelargonidin 3-O-glucoside and malonylglucoside were also considerable substrates, but low relative activity was observed for delphinidin 3-O-glucoside which has yet not been found inDahlia flowers.Dahlia 5GT showed substrate specificities different from those reported forSilene, Petunia, Matthiola andPerilla. Neither ADP-glucose nor UDP-galactose could serve as glycosyl donor.  相似文献   
10.
An UDPG: cyanidin 3-O-glucosyltransferase was isolated and purified about 260-fold from the flower buds ofSenecio x hybridus. The enzyme showed a pH optimum of 7.5 and no additional cofactors were required. The Km values for cyanidin and UDPG were 0.33 and 0.20 mM, respectively. Its molecular mass estimated by Sephacryl S-200 chromatography was 52 kDa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号