首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   27篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   18篇
  2014年   16篇
  2013年   9篇
  2012年   24篇
  2011年   15篇
  2010年   12篇
  2009年   13篇
  2008年   10篇
  2007年   15篇
  2006年   11篇
  2005年   12篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1966年   1篇
排序方式: 共有308条查询结果,搜索用时 156 毫秒
1.
2.
3.
The rapid repolarization during phase 1 of the action potential of sheep cardiac purkinje fibers has been attributed to a time- and voltage-dependent chloride current. In part, this conclusion was based on experiments that showed a substantial slowing of phase 1 when larger, presumably impermeant, anions were substituted for chloride in tyrode’s solution. We have re- examined the electrical effects of low-chloride solutions. We recorded action potentials of sheep cardiac purkinje fibers in normal tyrode’s solution and in low-chloride solutions made by substituting sodium propionate, acetylglycinate, methylsulfate, or methanesulfonate for the NaCl of Tyrode’s solution. Total calcium was adjusted to keep calcium ion activity of test solutions equal to that of control solutions. Propionate gave qualitatively variable results in preliminary experiments; it was not tested further. Low-chloride solutions made with the other anions gave much more consistent results: phase 1 and the notch that often occurs between phases 1 and 2 were usually unaffected, and the action potential duration usually increased. The only apparent change in the resting potential was a transient 3-6 mV depolarization when low-chloride solution was first admitted to the chamber, and a symmetrical transient hyperpolarization when chloride was returned to normal. If a time- and voltage-dependent chloride current exists in sheep cardiac purkinje fibers, our results suggest that it plays little role in generating phase 1 of the action potential.  相似文献   
4.
5.
6.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells.  相似文献   
7.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
8.
9.
We examined the genetic divergence of Platycerus hongwonpyoi Imura & Choe, 1989 in South Korea using the nuclear wingless (Wg) gene, internal transcribed spacer (ITS) region and mitochondrial cytochrome oxidase subunit I (COI) gene. We found no variation in Wg or ITS. Based on COI, P. hongwonpyoi was split into four well defined and one weakly supported clades, which were inferred to have diverged 2.11–1.33 Ma. The Platycerus hongwonpyoi population size seems to have decreased during the past several tens of thousands of years. The divergence times of major clades of P. hongwonpyoi were comparable with those involved in the speciation of certain Japanese species. Frequent overlapping of different clades at the same sites suggests the occurrence of secondary gene flow following differentiation in South Korea. In conclusion, the genus Platycerus underwent strikingly different divergence patterns in South Korea compared with Japan according to the disparate topographies of these two geographical areas.  相似文献   
10.
TLHS1 is a class I low molecular weight heat-shock protein (LMW HSP) of tobacco (Nicotiana tabacum). For a functional study of TLHS1, a recombinant DNA coding for TLHS1 with a hexahistidine tag at the aminoterminus was constructed and expressed in Escherichia coli. An expressed fusion protein, H6TLHS1, was purified using a Ni2+ affinity column and a Sephacryl S400 HR column. A polyclonal antibody against H6TLHS1 was produced to follow the fate of H6TLHS1 in E. coli. The fusion protein in E. coli maintained its solubility at a temperature of up to 90°C and most of the proteins in the E. coli cell lysate with H6TLHS1 were prevented from thermally induced aggregation at up to 90°C. We compared the viability of E. coli cells expressing H6TLHS1 to the E. coli cells without H6TLHS1 at a temperature of 50°C. After 8 h of high temperature treatment, E. coli cells with H6TLHS1 survived about three thousand times more than the bacterial cells without H6TLHS1. These results showed that a plant class I LMW HSP, TLHS1, can protect proteins of E. coli from heat denaturation, which could lead to a higher survival rate of the bacterial cells at high temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号