首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   0篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   10篇
  2015年   2篇
  2014年   5篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   10篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有126条查询结果,搜索用时 171 毫秒
1.
Summary Polymorphism and inheritance of wheat storage protein, gliadin, of durum (macaroni) and carthlicum wheats have been studied. Analysis of gliadin in 78 cultivars and in F2 seeds of intercultivar crosses of durum wheat revealed three different chromosome 1A-encoded blocks of components similar to those found in common wheat (GLD1A2, GLD1A18, GLD1A19). Most of the durum cultivars studied had these three blocks; GLD1A2 was also frequent in common wheat. In contrast, all chromosome 1B-encoded blocks of durum clearly differed in component composition from those found in common wheat. Therefore, durum could not be an ancestor or a derivate of recent bread wheat. Analysis of gliadin in the collection of carthlicum wheat (14 accessions) revealed several suspected chromosome 1A, 1B, and 6A-controlled blocks, some of which were similar to those in common wheat, while others were different. Therefore, carthlicum is likely to be an ancestor or a derivate of some forms of bread wheat. There were also chromosome 1A and 6A-, but not 1B-encoded blocks which were identical in durum and carthlicum wheats. The results confirm that all three wheats share the same genome A, but emphasize the heterogeneity of genotypes among donors of this genome. Discovery of identical blocks in tetraploids and hexaploids indicates polyphyletic [from different genotypes of donor (s)] origin of these wheats.  相似文献   
2.
Morphological and cytophotometric investigations have been performed on giant cells of the rabbit trophoblast to reveal a mechanism of nuclei polyploidization and define the level of polyploidy. The character of endomitotic chromosomes is found to differ and depend largely on the degree of nuclei polyploidy. Small chromosomes were found in nuclei with low levels of polyploidy. For highly polyploid nuclei, two stages are distinguished. In the first case condensed chromosomes join into bundles resembling Riesenchromosomen in plants, whereas in the second, decondensed chromosomal threads separate and disperse in the karyoplasm. The splitting does not involve nuclei-forming chromosomes in the region of the nucleolar organiser. The degree of polyploidy was determined on the 15th day of development. It was found that giant cell nuclei contain DNA in amounts corresponding to 32-512 chromosomal sets. Most of the nuclei have levels of 128c and 256c. Highly-polyploid nuclei disintegrate into small nuclei with the degree of polyploidy varying from 1c to 32c. Di- tri- and tetraploid nuclei predominate.  相似文献   
3.
4.
Russian Journal of Genetics - The genetic diversity of 123 apple accessions from the collection of the research and production base Pushkin and Pavlovsk Laboratories of VIR, including landraces,...  相似文献   
5.
Doklady Biochemistry and Biophysics - The data available to date indicate that the activation of nicotinic acetylcholine receptors (nAChR) of α7 type can reduce heart damage resulting from...  相似文献   
6.
We studied the effect of specific inhibitors of 5- and 12-lipoxygenases as well as the product of cyclooxygenase activity, prostaglandin E2, on proliferation and death of P388 leukemia cells. Inhibition of 5- and 12-lipoxygenases in the cells inhibits proliferation and induces apoptosis. The concentrations of baicalein, an inhibitor of 12-lipoxygenase, and AA861, an inhibitor of 5-lipoxygenase, causing a 50% death rate (LC50) proved to be the same, 50 M. Excessive prostaglandin also inhibited proliferation of the cells and induced apoptosis. The LC50 for prostaglandin E2 was 4 M. The obtained data suggest that apoptosis in P388 cells after lipoxygenase inhibition can be induced by both deficiency of lipoxygenase products and excess of prostaglandins in the cell.  相似文献   
7.
To elucidate possible causes of the elevation of genome number in somatic cells, hepatocyte ploidy levels were measured cytofluorimetrically and related to the organismal parameters (body size, postnatal growth rate, and postnatal development type) in 53 mammalian species. Metabolic scope (ratio of maximal metabolic rate to basal metabolic rate) was also included in 23 species. Body masses ranged 10(5) times, and growth rate more than 30 times. Postnatal growth rate was found to have the strongest effect on the hepatocyte ploidy. At a fixed body mass the growth rate closely correlates (partial correlation analysis) with the cell ploidy level (r = 0.85, P < 10(-6)), whereas at a fixed growth rate body mass correlates poorly with ploidy level (r = -0.38, P < 0.01). The mature young (precocial mammals) of the species have, on average, a higher cell ploidy level than the immature-born (altricial) animals. However, the relationship between precocity of young and cell ploidy levels disappears when the influences of growth rate and body mass are removed. Interspecies variability of the hepatocyte ploidy levels may be explained by different levels of competition between the processes of proliferation and differentiation in cells. In turn, the animal differences in the levels of this competition are due to differences in growth rate. A high negative correlation between the hepatocyte ploidy level and the metabolic scope indicates a low safety margin of organs with a high number of polyploid cells. This fact allows us to challenge a common opinion that increasing ploidy enhances the functional capability of cells or is necessary for cell differentiation. Somatic polyploidy can be considered a "cheap" solution of growth problems that appear when an organ is working at the limit of its capabilities.  相似文献   
8.
Genetic diversity for the alleles of gliadin-coding loci was studied with 465 durum wheat accessions from 42 countries. A total of 108 alleles were identified for four loci; 60 alleles were described for the first time. Broad diversity of rare gliadin-coding alleles was observed. The highest genetic diversity was characteristic of durum wheat accessions from the Middle East, Trans-Caucasia, the Pyrenean Peninsula, and the Balkans. Two genetically isolated ancient branches of durum wheat were isolated. A “southern” branch included mostly accessions from the Mediterranean region, the Middle East, and Trans-Caucasia. A “northern” branch included Russian and Ukrainian durum wheat accessions and varieties obtained on their basis. An additional group included durum wheat accessions that had been obtained in several past decades on the basis of the material of international breeding centers (CIMMYT and ICARDA) and had low genetic diversity.  相似文献   
9.
10.

Background

Hormone-refractory prostate cancer (HRPC), which is resistant to hormone therapy, is a major obstacle in clinical treatment. An approach to inhibit HRPC growth and ultimately to kill cancers is highly demanded.

Results

KUD773 induced the anti-proliferative effect and subsequent apoptosis in PC-3 and DU-145 (two HRPC cell lines); whereas, it showed less active in normal prostate cells. Further examination showed that KUD773 inhibited tubulin polymerization and induced an increase of mitotic phosphoproteins and polo-like kinase 1 (PLK1) phosphorylation, indicating a mitotic arrest of the cell cycle through an anti-tubulin action. The kinase assay demonstrated that KUD773 inhibited Aurora A activity. KUD773 induced an increase of Cdk1 phosphorylation at Thr161 (a stimulatory phosphorylation site) and a decrease of phosphorylation at Tyr15 (an inhibitory phosphorylation site), suggesting the activation of Cdk1. The data were substantiated by an up-regulation of cyclin B1 (a Cdk1 partner). Furthermore, KUD773 induced the phosphorylation and subsequent down-regulation of Bcl-2 and activation of caspase cascades.

Conclusions

The data suggest that KUD773 induces apoptotic signaling in a sequential manner. It inhibits tubulin polymerization associated with an anti-Aurora A activity, leading to Cdk1 activation and mitotic arrest of the cell cycle that in turn induces Bcl-2 degradation and a subsequent caspase activation in HRPCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号