首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   3篇
  22篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
1.
Influenza A viruses can be isolated from a variety of animals, but their range of hosts is restricted. For example, human influenza viruses do not replicate in duck intestine, the major replication site of avian viruses in ducks. Although amino acids at positions 226 and 228 of hemagglutinin (HA) of the H3 subtype are known to be important for this host range restriction, the contributions of specific amino acids at these positions to restriction were not known. Here, we address this issue by generating HAs with site-specific mutations of a human virus that contain different amino acid residues at these positions. We also let ducks select replication-competent viruses from a replication-incompetent virus containing a human virus HA by inoculating animals with 1010.5 50% egg infectious dose of the latter virus and identified a mutation in the HA. Our results showed that the Ser-to-Gly mutation at position 228, in addition to the Leu-to-Gln mutation at position 226 of the HA of the H3 subtype, is critical for human virus HA to support virus replication in duck intestine.  相似文献   
2.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   
3.
Paenibacillus curdlanolyticus B-6 produces an extracellular multienzyme complex containing a major xylanase subunit, designated Xyn11A, which includes two functional domains belonging to glycosyl hydrolase family-11 (GH11) and carbohydrate binding module family-36 (CBM36) and possesses a glycine and asparagine-rich linker (linker). To clarify the roles of each functional domain, recombinant proteins XynXL and XynX (CBM36 deleted and CBM36 and linker deleted, respectively) were constructed. Their xylanase activities were similar toward soluble xylan, whereas XynXL showed decreased hydrolysis activity toward insoluble xylan while XynX had no xylanase activity. To determine the significance of the linker and its neighbor region, XynX was subjected to secondary structural alignments using circular dichroism (CD) spectroscopy and three-dimensional (3D) structural analysis. A seven amino acid (NTITIGG) neighbor linker sequence was highly conserved among GH11 xylanases of Paenibacillus species. Although XynX exhibited a typical GH11 xylanase structure, conformational gaps were observed in the β6- and β12-sheets and in CD spectra. Flipping of the Arg163 side chains in the subsite was also observed upon analysis of superimposed models. Docking analysis using xylohexaose indicated that flipping of the Arg163 side chains markedly affected substrate binding in the subsite. To identify the amino acids related to stabilizing the substrate binding site, XynX with an extended C-terminal region was designed. At least seven amino acids were necessary to recover substrate binding and xylanase activity. These results indicated that the seven amino acid neighbor Xyn11A linker plays an important role in the activity and conformational stability of the xylanase domain.  相似文献   
4.
Alteration of illumination with optimum carbon dioxide fixation-based curve in this research successfully enhanced the CO2-fixation (qco2) capability ofChlorella vulgaris Buitenzorg cultivated in a bubble column photo bioreactor. The level of CO2 fixation was up to 1.91 times that observed from cultivation with intensification of illumination on an optimum growth-based curve. During 144 h of cultivation, alteration of light intensity on an optimum CO2-fixation-based curve produced a qCO2 of 6.68 h?1. Increases in light intensity based on a curve of optimum CO2-fixation produced a final cell concentration of about 5.78 g/L. Both cultivation methods were carried out under ambient pressure at a temperature of 29°C with a superficial gas velocity of 2.4 m/h (UG). Cells were grown on Beneck medium in a 1.0 L Bubble Column Photo bioreactor illuminated by aPhillips Halogen Lamp (20 W/12 V/50 Hz). The inlet gas had a carbon dioxide content of 10%.  相似文献   
5.
6.

Background

Cellulases continue to be one of the major costs associated with the lignocellulose hydrolysis process. Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic bacterium that produces cellulosomes capable of efficiently degrading plant cell walls. The end-product cellobiose, however, inhibits degradation. To maximize the cellulolytic ability of C. thermocellum, it is important to eliminate this end-product inhibition.

Results

This work describes a system for biological saccharification that leads to glucose production following hydrolysis of lignocellulosic biomass. C. thermocellum cultures supplemented with thermostable beta-glucosidases make up this system. This approach does not require any supplementation with cellulases and hemicellulases. When C. thermocellum strain S14 was cultured with a Thermoanaerobacter brockii beta-glucosidase (CglT with activity 30 U/g cellulose) in medium containing 100 g/L cellulose (617 mM initial glucose equivalents), we observed not only high degradation of cellulose, but also accumulation of 426 mM glucose in the culture broth. In contrast, cultures without CglT, or with less thermostable beta-glucosidases, did not efficiently hydrolyze cellulose and accumulated high levels of glucose. Glucose production required a cellulose load of over 10 g/L. When alkali-pretreated rice straw containing 100 g/L glucan was used as the lignocellulosic biomass, approximately 72% of the glucan was saccharified, and glucose accumulated to 446 mM in the culture broth. The hydrolysate slurry containing glucose was directly fermented to 694 mM ethanol by addition of Saccharomyces cerevisiae, giving an 85% theoretical yield without any inhibition.

Conclusions

Our process is the first instance of biological saccharification with exclusive production and accumulation of glucose from lignocellulosic biomass. The key to its success was the use of C. thermocellum supplemented with a thermostable beta-glucosidase and cultured under a high cellulose load. We named this approach biological simultaneous enzyme production and saccharification (BSES). BSES may resolve a significant barrier to economical production by providing a platform for production of fermentable sugars with reduced enzyme amounts.
  相似文献   
7.
The isolation of an H5N1 influenza A virus from a tree sparrow (Passer montanus) captured in East Java, Indonesia in 2010 is reported here. Its hemagglutinin and neuraminidase were genetically similar to those of human isolates from 2006-2007 in Indonesia. The finding of a tree sparrow H5N1 virus that possesses genetically similar surface molecules to those of human viruses highlights the importance of monitoring resident wild birds, as well as migratory birds, for pandemic preparedness.  相似文献   
8.

Background

Circulating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.

Methodology/Principal Findings

Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12–1275 CTCs/ml; Lung cancer samples: 10–1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance with the original tumor-biopsy samples.

Conclusions/Significance

We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS) or proteomic analysis.  相似文献   
9.
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.  相似文献   
10.
The M2 protein from influenza A virus is a 97-amino-acid protein with a single transmembrane helix that forms proton-selective channels essential to virus function. The hydrophobic transmembrane domain of the M2 protein (M2TM) contains a sequence motif that mediates the formation of functional tetramers in membrane environments. A variety of structural models have previously been proposed which differ in the degree of helix tilt, with proposed tilts ranging from approximately 15 degrees to 38 degrees . An important issue for understanding the structure of M2TM is the role of peptide-lipid interactions in the stabilization of the lipid bilayer bound tetramer. Here, we labeled the N terminus of M2TM with a nitroxide and studied the tetramer reconstituted into lipid bilayers of different thicknesses using EPR spectroscopy. Analyses of spectral changes provide evidence that the lipid bilayer does influence the conformation. The structural plasticity displayed by M2TM in response to membrane composition may be indicative of functional requirements for conformational change. The various structural models for M2TM proposed to date--each defined by a different set of criteria and in a different environment--might provide snapshots of the distinct conformational states sampled by the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号