首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   23篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   9篇
  2015年   12篇
  2014年   16篇
  2013年   8篇
  2012年   10篇
  2011年   12篇
  2010年   9篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1992年   10篇
  1991年   11篇
  1990年   13篇
  1989年   2篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1981年   3篇
  1980年   5篇
  1978年   5篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1969年   1篇
  1968年   4篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1959年   1篇
  1934年   1篇
排序方式: 共有279条查询结果,搜索用时 31 毫秒
1.
2.
Crystal structure of cytochrome c peroxidase compound I   总被引:1,自引:0,他引:1  
We have compared the 2.5-A crystal structure of yeast cytochrome c peroxidase (CCP) with that of its semistable two-equivalent oxidized intermediate, compound I, by difference Fourier and least-squares refinement methods. Both structures were observed at -15 degrees C. The difference Fourier map reveals that formation of compound I causes only small positional adjustments of a few tenths of an angstrom. The map's most pronounced feature is a pair of positive and negative peaks bracketing the heme iron position. Least-squares refinement shows that the iron atom moves about 0.2 A toward the distal side of the heme. No significant difference density is evident near the side chains of Trp-51 or Met-172, each of which has been proposed to be the site of the electron paramagnetic resonance (EPR) active radical in compound I. However, the second most prominent feature of difference density is a negative peak near the side chain of Thr-180, which, according to the results of least-squares refinement, moves by 0.15 A in the direction of Met-230. These observations, together with the results of mutagenesis experiments [Fishel, L. A., Villafranca, J. E., Mauro, J. M., & Kraut, J. (1987) Biochemistry 26, 351-360; Goodin, D. B., Mauk, A. G., & Smith, M. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1295-1299] in which Trp-51 and Met-172 have been replaced without loss of the EPR radical signal in compound I, lead us to consider the possibility that the radical site lies within a cluster composed of the side chains of Met-230, Met-231, and Trp-191.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
Recognition of two different species in the liverwort genusMonoclea Hook. (monotypic orderMonocleales), viz.M. forsteri Hook. in New Zealand andM. gottschei Lindb. in the New World, is supported by characteristics of the sporophyte, antheridial receptacle and secondary metabolites.M. gottschei produces the greatest variety of flavonoids and the largest amount of bisbibenzyls ever encountered in a liverwort. In contrast,M. forsteri is poor in secondary metabolites. Two allopatric subspecies are recognized inM. gottschei, based on characteristics of the antheridial receptacle: subsp.gottschei in Chile (Valdivian region, Juan Fernandez Is.) and subsp.elongata Gradst. & Mues, subsp. nova, in tropical America. The exclusive occurrence inMonoclea of glucuronide and galacturonide flavone glycosides and the fact that capsule dehiscence may take place before full elongation of the seta are new arguments in support of the placement ofMonocleales in theMarchantiidae. Publication Nr. 43 of the Arbeitskreis Chemie und Biologie der Moose, Universität des Saarlandes, Saarbrücken. This paper is dedicated to DrElla O. Campbell, Massey University, Department of Botany and Zoology, New Zealand on the occasion of her 80th birthday.  相似文献   
4.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
Crystalline R67 dihydrofolate reductase (DHFR) is a dimeric molecule with two identical 78 amino acid subunits, each folded into a beta-barrel conformation. The outer surfaces of the three longest beta strands in each protomer together form a third beta barrel having six strands at the subunit interface. A unique feature of the enzyme structure is that while the intersubunit beta barrel is quite regular over most of its surface, an 8-A "gap" runs the full length of the barrel, disrupting potential hydrogen bonds between beta-strand D in subunit I and the adjacent corresponding strand of subunit II. It is proposed that this deep groove is the NADPH binding site and that the association between protein and cofactor is modulated by hydrogen-bonding interactions along one face of this antiparallel beta-barrel structure. A hypothetical model is proposed for the R67 DHFR-NADPH-folate ternary complex that is consistent with both the known reaction stereoselectivity and the weak binding of 2,4-diamino inhibitors to the plasmid-specified reductase. Geometrical comparison of this model with an experimentally determined structure for chicken DHFR suggests that chromosomal and type II R-plasmid specified enzymes may have independently evolved similar catalytic machinery for substrate reduction.  相似文献   
6.
Dihydrofolate reductase. The stereochemistry of inhibitor selectivity   总被引:7,自引:0,他引:7  
X-ray structural results are reported for 10 triazine and pyrimidine inhibitors of dihydrofolate reductase, each one studied as a ternary complex with NADPH and chicken dihydrofolate reductase. Analysis of these data and comparison with structural results from the preceding paper (Matthews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J., Volz, K.W., Kaufman, B. T., Beddell, C.R., Champness, J.N., Stammers, D.K., and Kraut, J. (1985) J. Biol. Chem. 260, 381-391) in which we contrasted binding of the antibiotic trimethoprim (TMP) to chicken dihydrofolate reductase on the one hand with its binding to Escherichia coli dihydrofolate reductase on the other, permit identification of differences that are important in accounting for TMP's selectivity. The crystallographic evidence strongly suggests that loss of a potential hydrogen bond between the 4-amino group of TMP and the backbone carbonyl of Val-115 when TMP binds to chicken dihydrofolate reductase but not when it binds to the E. coli reductase is the major factor responsible for this drug's more potent inhibition of bacterial dihydrofolate reductase. A key finding of the current study which is important in understanding why TMP binds differently to chicken and E. coli dihydrofolate reductases is that residues on opposite sides of the active-site cleft in chicken dihydrofolate reductase are about 1.5-2.0 A further apart than are structurally equivalent residues in the E. coli enzyme.  相似文献   
7.
The role of the complement system in containment of feline leukemia virus infection was studied by cobra venom factor treatment of feline leukemia virus-immune cats. One to three weeks after cobra venom factor treatment, an increase in viral antigen in marrow myelomonocytic cells and circulating immune complexes was noted. Prevention of reactivation of feline leukemia virus infection may in part depend on an intact complement system.  相似文献   
8.
Metabolic acidosis produces a phosphaturia which is independent of parathyroid hormone or dietary phosphorus intake. To study the underlying mechanism, inorganic phosphate (Pi) and glucose transport were studied in brush-border membrane vesicles prepared from the renal cortex of parathyroidectomized rats gavaged for three days with either 7.5 ml of 1.6% NaCl (control) or 1.5% NH4Cl (acidosis). At killing, blood pH and plasma bicarbonate were 7.36 ± 0.01 and 21.8 ± 0.8 mequiv./l, respectively, in control and 7.12 ± 0.03 (P < 0.01) and 11.1 ± 1.2 (P < 0.01) in acidotic rats. Serum Pi was similar in both groups, while 24 h urine Pi excretion was higher in the acidotic group (P < 0.01). Peak sodium-dependent uptake of Pi, measured after 1.5 min of incubation, was higher in controls than acidotic rats (4442 ± 464 vs. 2412 ± 259 pmol/mg protein, P < 0.01), whereas peak glucose uptake at 1.5 min was not significantly different between the groups. Equilibrium values for Pi and glucose uptake were similar in the two groups. Km for Pi uptake in the control and acidotic animals were not different, 0.036 and 0.040 mM, respectively. By contrast, Vmax was higher in controls than in the acidotic group, 3.13 vs. 1.15 nmol/mg protein per 15 s. These results suggest that metabolic acidosis directly inhibits Pi uptake by the brush border of the proximal tubule by decreasing the availability of Pi carriers of the renal brush-border membrane.  相似文献   
9.
The spectroscopic properties of a mutant cytochrome c peroxidase, in which Asp-235 has been replaced by an asparagine residue, were examined in both nitrate and phosphate buffers between pH 4 and 10.5. The spin state of the enzyme is pH dependent, and four distinct spectroscopic species are observed in each buffer system: a predominantly high-spin Fe(III) species at pH 4, two distinct low-spin forms between pH 5 and 9, and the denatured enzyme above pH 9.3. The spectrum of the mutant enzyme at pH 4 is dependent upon specific ion effects. Increasing the pH above 5 converts the mutant enzyme to a predominantly low-spin hydroxy complex. Subsequent conversion to a second low-spin form is essentially complete at pH 7.5. The second low-spin form has the distal histidine, His-52, coordinated to the heme iron. To evaluate the effect of the changes in coordination state upon the reactivity of the enzyme, the reaction between hydrogen peroxide and the mutant enzyme was also examined as a function of pH. The reaction of CcP(MI,D235N) with peroxide is biphasic. At pH 6, the rapid phase of the reaction can be attributed to the bimolecular reaction between hydrogen peroxide and the hydroxy-ligated form of the mutant enzyme. Despite the hexacoordination of the heme iron in this form, the bimolecular rate constant is approximately 22% that of pentacoordinate wild-type yeast cytochrome c peroxidase. The bimolecular reaction of the mutant enzyme with peroxide exhibits the same pH dependence in nitrate-containing buffers that has been described for the wild-type enzyme, indicating a loss of reactivity with the protonation of a group with an apparent pKa of 5.4. This observation eliminates Asp-235 as the source for this heme-linked ionization and strengthens the hypothesis that the pKa of 5.4 is associated with His-52. The slower phase of the reaction between peroxide and the mutant enzyme saturates at high peroxide concentration and is attributed to conversion of unreactive to reactive forms of the enzyme. The fraction of enzyme which reacts via the slow phase is dependent upon both pH and specific ion effects.  相似文献   
10.
An Ustilago maydis ergosterol biosynthesis mutant (A14) which is partially blocked in sterol 14alpha-demethylase (P45014DM) activity is described. This mutant accumulated the abnormal 14alpha-methyl sterols, eburicol, 14alpha-methylfecosterol, and obtusifoliol, along with significant amounts of ergosterol. Although the A14 mutant grew nearly as well as the wild type, it was impaired in cell extension growth, which indicated a dysfunction in apical cell wall synthesis. The mutant was also found to be hypersensitive to the azole fungicides penconazole and tebuconazole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号