首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   3篇
  2015年   2篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1997年   2篇
  1989年   1篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有64条查询结果,搜索用时 281 毫秒
1.
We recently showed that bitter melon-derived triterpenoids (BMTs) activate AMPK and increase GLUT4 translocation to the plasma membrane in vitro, and improve glucose disposal in insulin resistant models in vivo. Here we interrogated the mechanism by which these novel compounds activate AMPK, a leading anti-diabetic drug target. BMTs did not activate AMPK directly in an allosteric manner as AMP or the Abbott compound (A-769662) does, nor did they activate AMPK by inhibiting cellular respiration like many commonly used anti-diabetic medications. BMTs increased AMPK activity in both L6 myotubes and LKB1-deficient HeLa cells by 20–35%. Incubation with the CaMKKβ inhibitor, STO-609, completely attenuated this effect suggesting a key role for CaMKKβ in this activation. Incubation of L6 myotubes with the calcium chelator EGTA-AM did not alter this activation suggesting that the BMT-dependent activation was Ca2+-independent. We therefore propose that CaMKKβ is a key upstream kinase for BMT-induced activation of AMPK.  相似文献   
2.
2-deoxy-D-glucose metabolism in individual tissues of the rat in vivo   总被引:2,自引:0,他引:2  
The nature of and rates of loss of products of systemic radiolabelled 2-deoxy-D-glucose in rat tissues in vivo were investigated to validate the use of this tracer to measure rates of metabolism of circulating glucose by tissues in vivo. Apparent first order rate constants for loss of products ranged from 8.0 +/- 0.10 (SD) X 10(-3) min-1 (liver) to 2.2 +/- 0.8 X 10(-3) min-1 (skeletal muscle). 2-deoxyglucose 6-phosphate was the major product found in all tissues examined except liver; all tissues contained other minor products. Products were effectively trapped by rat tissues in vivo allowing the use of this tracer for the measurement of rates of circulating glucose utilisation by tissues in vivo.  相似文献   
3.
4.
The insulin-responsive glucose transporter GLUT-4 is found in muscle and fat cells in the transGolgi reticulum (TGR) and in an intracellular tubulovesicular compartment, from where it undergoes insulindependent movement to the cell surface. To examine the relationship between these GLUT-4–containing compartments and the regulated secretory pathway we have localized GLUT-4 in atrial cardiomyocytes. This cell type secretes an antihypertensive hormone, referred to as the atrial natriuretic factor (ANF), in response to elevated blood pressure. We show that GLUT-4 is targeted in the atrial cell to the TGR and a tubulo-vesicular compartment, which is morphologically and functionally indistinguishable from the intracellular GLUT-4 compartment found in other types of myocytes and in fat cells, and in addition to the ANF secretory granules. Forming ANF granules are present throughout all Golgi cisternae but only become GLUT4 positive in the TGR. The inability of cyclohexamide treatment to effect the TGR localization of GLUT-4 indicates that GLUT-4 enters the ANF secretory granules at the TGR via the recycling pathway and not via the biosynthetic pathway. These data suggest that a large proportion of GLUT-4 must recycle via the TGR in insulin-sensitive cells. It will be important to determine if this is the pathway by which the insulin-regulatable tubulo-vesicular compartment is formed.  相似文献   
5.
Asp, Sven, Allan Watkinson, Nicholas D. Oakes, and Edward W. Kraegen. Prior eccentric contractions impair maximal insulin action on muscle glucose uptake in the conscious rat.J. Appl. Physiol. 82(4):1327-1332, 1997.Our aim was to examine the effect of prioreccentric contractions on insulin action locally in muscle in theintact conscious rat. Anesthetized rats performed one-leg eccentriccontractions through the use of calf muscle electrical stimulationfollowed by stretch of the active muscles. Two days later, basal andeuglycemic clamp studies were conducted with the rats in the awakefasted state. Muscle glucose metabolism was estimated from2-[14C(U)]deoxy-D-glucoseandD-[3-3H]glucose administration, and comparisons were made between the eccentrically stimulated and nonstimulated (control) calfmuscles. At midphysiological insulin levels, effects ofprior eccentric exercise on muscle glucose uptake were notstatistically significant. Maximal insulin stimulation revealed reducedincremental glucose uptake above basal(P < 0.05 in the red gastrocnemius;P < 0.1 in the white gastrocnemiusand soleus) and impaired net glycogen synthesis in all eccentricallystimulated muscles (P < 0.05). Weconclude that prior eccentric contractions impair maximal insulin action (responsiveness) on local muscle glucose uptake and glycogen synthesis in the conscious rat.

  相似文献   
6.
A closed-loop glucose controlled insulin infusion system was developed, consisting of elements for continuous blood glucose analysis, a computer control system, and infusion systems. Improvements include decreased size, cost reduction and better performance. The algorithm used was a piecewise linear representation of the sigmoidal curve commonly employed. The apparatus has been applied to simulation of the healthy beta cell and glucose clamp studies.  相似文献   
7.
In the use of low-level intravenous insulin infusion for treating diabetic hyperglycaemia and ketoacidosis adsorption of insulin to containers or plastic infusion apparatus results in significant losses of 60-80% of insulin in dilute physiological saline solution (40 U/l). It is therefore necessary to add protein to the carrier solution to minimize losses and maintain a constant delivery rate. Recovery studies showed that 3.5% w/v polygeline solution (polymer of degraded gelatin) was a suitable medium for this purpose, offering some advantages over human serum albumin. A minimum concentration of 0.5% polygeline was required to ensure adequate delivery of insulin to the patient.  相似文献   
8.
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.  相似文献   
9.
Peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma agonists lower lipid accumulation in muscle and liver by different mechanisms. We investigated whether benefits could be achieved on insulin sensitivity and lipid metabolism by the dual PPARalpha/gamma agonist ragaglitazar in high fat-fed rats. Ragaglitazar completely eliminated high-fat feeding-induced liver triglyceride accumulation and visceral adiposity, like the PPARalpha agonist Wy-14643 but without causing hepatomegaly. In contrast, the PPARgamma agonist rosiglitazone only slightly lessened liver triglyceride without affecting visceral adiposity. Compared with rosiglitazone or Wy-14643, ragaglitazar showed a much greater effect (79%, P < 0.05) to enhance insulin's suppression of hepatic glucose output. Whereas all three PPAR agonists lowered plasma triglyceride levels and lessened muscle long-chain acyl-CoAs, ragaglitazar and rosiglitazone had greater insulin-sensitizing action in muscle than Wy-14643, associated with a threefold increase in plasma adiponectin levels. There was a significant correlation of lipid content and insulin action in liver and particularly muscle with adiponectin levels (P < 0.01). We conclude that the PPARalpha/gamma agonist ragaglitazar has a therapeutic potential for insulin-resistant states as a PPARgamma ligand, with possible involvement of adiponectin. Additionally, it can counteract fatty liver, hepatic insulin resistance, and visceral adiposity generally associated with PPARalpha activation, but without hepatomegaly.  相似文献   
10.
Members of the neuropeptide Y (NPY) family regulate many physiological processes via interaction with at least four functional, pharmacologically distinct Y-receptors. However, selective antagonists developed for several subtypes have not been useful in defining particular Y-receptor functions in vivo. To identify critical residues within members of the NPY family required for Y-receptor subtype-selectivity we have determined the contribution of each residue within NPY to receptor binding by replacing them with L-alanine. In a second study, chimeric peptides where single or stretches of residues were interchanged between members of the NPY family were generated and tested in radioligand binding studies. Overall, substituted alanine analogues exhibited similar orders of affinities at each Y-receptor subtype with no obvious subtype-selectivity. Residues of particular interest are Leu30 which exhibited selectivity for the Y4-receptor, whereas Asp16 does not appear to play any role in ligand binding. Several chimeric peptides, e.g., [K4]pancreatic polypeptide ([K4]PP) and [RYYSA(19-23)]PP clearly showed higher affinity at the Y4 and Y5 subtypes compared to the Y1 and Y2 subtypes. In addition, the transfer of a proline residue from position 14 to 13 in peptide YY decreases its affinity at the Y1-, Y4- and Y5-receptors but is unchanged at the Y2 subtype. Combining these results, and with the help of molecular modelling, second generation chimeras were designed. The most significant improvement was achieved in chimera 2-36[K4,RYYSA(19-23)]PP where the affinity for the Y5 subtype increased by ninefold over that from NPY. Several of these compounds were also tested for their ability to stimulate food intake in a rat model. Interestingly, again 2-36[K4,RYYSA(19-23)]PP showed the most dramatic effect with a major increase on food intake over a range of doses compared to NPY suggesting a possible synergistic effect of several Y-receptors on feeding behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号