首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   13篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   11篇
  2011年   9篇
  2010年   7篇
  2009年   7篇
  2008年   13篇
  2007年   10篇
  2006年   4篇
  2005年   11篇
  2004年   1篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   5篇
  1979年   9篇
  1978年   4篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1967年   1篇
  1959年   1篇
排序方式: 共有266条查询结果,搜索用时 46 毫秒
1.
2.
Various levels of organisation in the central nervous system can be distinguished, ranging from the molecular, the cellular, the multicellular and the neuronal system level. The relationship between receptor function and behaviour is focussed to the dopamine D2 type receptor of the striatal complex in relation to extrapyramidal and limbic systems. In the striatal complex a striosomal and a matrix compartment can be distinguished. The matrix compartment can be considered as a part of the extrapyramidal system and is innervated by the motor cortex and by the dopaminergic neurons of the ventral tegmental, the dorsal substantia nigra and the retrorubral area. This compartment has a relatively high density of D2 receptors. The striosomes are innervated by e.g. the prelimbic cortex and dopamine neurones of the ventral part of the substantia nigra; here the density of D2 receptors are lower. Under normal conditions most of the D2 receptors are occupied by endogenous dopamine, and postsynaptic (e.g. cholinergic) function is therefore sensitive to antagonists; e.g. antipsychotics. Exposure to drugs such as amphetamine produces a substantial overflow of dopamine from nerve terminals leading to the activation of remote dopamine receptors, that may belong to the system that normally is not influenced by these nerve terminals (defined here as extra synaptic receptor activation). A loss of the normal spatial-temporal relationships may also occur during L-DOPA therapy in Parkinson's disease. In this illness, due to degeneration of dopaminergic innervation, several dopamine receptors have become non-synaptic. In these states of intoxication the normal spatial/temporal organization is lost and such a loss may contribute to behavioural impairments.  相似文献   
3.

Background  

Micro-biological research relies on the use of model organisms that act as representatives of their species or subspecies, these are frequently well-characterized laboratory strains. However, it has often become apparent that the model strain initially chosen does not represent important features of the species. For micro-organisms, the diversity of their genomes is such that even the best possible choice of initial strain for sequencing may not assure that the genome obtained adequately represents the species. To acquire information about a species' genome as efficiently as possible, we require a method to choose strains for analysis on the basis of how well they represent the species.  相似文献   
4.
Automated determinations of 5-hydroxytryptamine and its main metabolite, 5-hydroxyindoleacetic acid, have been described (Technicon autoanalyzer). The determinations are based on an extraction procedure from deproteinized tissue extracts or cerebrospinal fluid by means of butanolheptane mixtures. The indoles are transferred from the organic phase to a water phase and determined fluormetrically with the cysteine-o-phthaldialdehyde method. The method is highly sensitive: solutions containing 1 ng/ml can be reproducibly determined. Twenty samples per hour can be passed through the system. The determination of both 5-hydroxyindoles is performed with the same manifold.  相似文献   
5.
Summary Lacertilian species display a remarkable diversity in the organization of the neural apparatus of their pineal organ (epiphysis cerebri). The occurrence of immunoreactive S-antigen and opsin was investigated in the retina and pineal organ of adult lizards, Uromastix hardwicki. In this species, numerous retinal photoreceptors displayed S-antigen-like immunoreactivity, whereas only very few pinealocytes were labeled. Immunoreactive opsin was found neither in retinal photoreceptors nor in pinealocytes. Electron microscopy showed that all pinealocytes of Uromastix hardwicki resemble modified pineal photoreceptors. A peculiar observation is the existence of a previously undescribed membrane system in the inner segments of these cells. It is evidently derived from the rough endoplasmic reticulum but consists of smooth membranes. The modified pineal photoreceptor cells of Uromastix hardwicki were never seen to establish synaptic contacts with somata or dendrites of intrapineal neurons, which are extremely rare. Vesiclecrowned ribbons are prominent in the basal processes of the receptor cells, facing the basal lamina or establishing receptor-receptor and receptor-interstitial type synaptoid contacts. Dense-core granules (60–250 nm in diameter) speak in favor of a secretory activity of the pinealocytes. Attention is drawn to the existence of receptor-receptor and receptor-interstitial cell contacts indicating intramural cellular relationships that deserve further study.Supported by the Deutsche Forschungsgemeinschaft (Ko 758/31) and the Deutscher Akademischer Austauschdienst (Senior DAAD Research Fellowship to M.A.H.)  相似文献   
6.
Summary The retinal proteins opsin,-transducin, S-antigen and interstitial retinol-binding protein (IRBP) are essential for the processes of vision. By use of immunocyto-chemistry we have employed antibodies directed against these photoreceptor proteins in an attempt to identify the photoreceptor systems (retina, pineal and deep brain) of the Japanese quail. Opsin immunostaining was identified within many outer (basal portion) and inner segments of retinal photoreceptor cells and limited numbers of photoreceptor perikarya. Opsin immunostaining was also demonstrated in limited numbers of pinealocytes with all parts of these cells being immunoreactive. These results differ from previous observations. In contrast to the results obtained with the antibody against opsin, S-antigen and-transducin immunostaining was seen throughout the entire outer segments and many photoreceptor perikarya of the retina. In the pineal organ immunostaining was seen in numerous pinealocytes in all follicles. These results conform to previous findings in birds. In addition, IRBP has been demonstrated for the first time in the avian retina and pineal organ. These findings underline the structural and functional similarities between the retina and pineal organ and provide additional support for a photoreceptive role of the avian pineal. No specific staining was detected in any other region of the brain in the Japanese quail; the hypothalamic photoreceptors of birds remain unidentified.  相似文献   
7.
U4 RNA is one of several small nuclear RNAs involved in the splicing of mRNA precursors. The domestic chicken has two genes per haploid genome that are capable of encoding U4 RNA. The U4X RNA gene (which encodes a sequence variant of U4 RNA that was unknown prior to the cloning of the gene) and the U4B RNA gene were both expressed in vivo in each of seven adult and three embryonic chicken tissues examined. However, the ratio of U4B RNA to U4X RNA can vary more than sevenfold in both a tissue- and stage-specific manner.  相似文献   
8.
9.
The heterogeneous paraventricular nucleus (PVN) of birds offers favorable conditions for the analysis of intrinsic, afferent, and efferent connections of neuroendocrine systems. Paraventricular neurons are successfully impregnated with the Golgi-technique. The findings indicate a direct influence of the cerebrospinal fluid (CSF) on the magnocellular neurons that, via their axon terminals in the neural lobe of the pituitary, are also exposed to the hemal milieu. The magnocellular neurons are intermingled with parvocellular elements which may represent local interneurons. A group of parvocellular nerve cells is identified as CSF-contacting neurons. This type of cell forms a basic morphologic component of the avian neuroendocrine apparatus. Immunocytochemical and ultrastructural studies further support the concept of neuronal interactions between parvocellular and magnocellular elements. Moreover, these findings speak in favor of the existence of recurrent collaterals of the magnocellular neurons. Nerve cells giving rise to afferent connections to the PVN are located in the limbic system and autonomic areas of the upper and lower brainstem. Further afferents may originate from the subfornical organ, the organon vasculosum laminae terminalis, the ventral tegmentum, and the area postrema. Via efferent projections, the PVN is connected to the nucleus accumbens, lateral septum, several hypothalamic nuclei, the neural lobe of the pituitary, the organon vasculosum laminae terminalis, the subfornical organ, the pineal organ, the area postrema, the lateral habenular complex, and various autonomic areas of the reticular formation in the upper and lower brainstem and the spinal cord. In conclusion, the PVN may be regarded as an integral component of the neuroendocrine apparatus reciprocally coupled to the limbic system, several circumventricular organs, and various autonomic centers of the brain.  相似文献   
10.
The influence of desmethylimipramine (DMI) on the release of endogenous gamma-aminobutyric acid (GABA) and some other amino acids from the rat thalamus was studied with a push-pull perfusion technique. Following HPLC the amino acids were fluorimetrically estimated. Added to the perfusion medium at a concentration of 10 mumol L-1, DMI caused a 5- to 10-fold increase in the release of GABA. Similar effects were found with imipramine, trimeprimine, haloperidol, and propranolol. The elevation of GABA release induced by DMI was Ca dependent. The release of aspartate and glutamate was also increased by DMI, but in contrast to K ions, DMI did not reduce the thalamic output of glutamine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号