首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   2篇
  2021年   2篇
  2018年   4篇
  2017年   2篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   9篇
  2001年   4篇
  2000年   12篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1965年   1篇
排序方式: 共有212条查询结果,搜索用时 515 毫秒
1.
The connection between a visceral ganglia interneuron initiating bursting pacemaker activity in the RPal neuron and the RPal neuron itself was investigated inHelix pomatia. Stimulating the interneuron either initiated or intensified bursting activity in the RPal neuron, depending on initial electrical activity in this cell. Replacing calcium with magnesium ions in the extracellular fluid and adding CdCl2 to this fluid reversibly inhibited the effect of interneuronal stimulation on the RPal neuron. The latter effect was unaffected by increasing the concentration of extracellular Ca2+ 10 to 70 mM. Intracellular injection of both Cs+ and TEA into the interneuron produced an increase in the duration of its action potentials and rendered the link connecting the neurons more effective. It is deduced that a monosynaptic chemical connection exists between the interneuron and the RPal neuron for which a peptide compound serves as transmitter.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 20–28, January–February, 1987.  相似文献   
2.
Kononenko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):483-488
The ionic mechanisms of hyperpolarization produced by applying oxytocin (OT) were investigated at the membrane of identifiedHelix pomatia neurons. Two types of neuron were known to exist, in one of which hyperpolarization is produced by a reduction in chloride ions at the membrane and a rise in membrane permeability to potassium ions in the other. In the first of these, response to OT had a reversal potential of –40 mV and decreased when furosemide and tolbutamide were added to the external medium. In the second case, the potential of the reversal of the response to OT was –70 mV. Upon doubling of potassium ion concentration in the external solution it was shifted towards depolarization by 15 mV. It is sugested thatHelix pomatia neurons have different types of OT receptors, some of which, when activated, manifest reduced chloride permeability at the membrane (probably through the cell cyclase system) with a rise in potassium permeability at the membrane in others.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 659–666, September–October, 1988.  相似文献   
3.
4.
5.
6.
34Fusarium graminearum Schw isolates produced 4-deoxynivalenol to form significant amounts of 4, 7 — dideoxynivalenol and lesser amounts of 4 — deoxynivalenol monoacetates on grain substratesin vitro. This is the first report on the capability a large group of naturally occurring isolates to produce 4,7-dideoxynivalenol. The average levels of 4,7-dideoxynivalenol on rice, corn, barley, and wheat as a substrate were respectively 26.8, 14.0, 12.8, and 10.5% of the level of 4-deoxynivalenol. 4, 7 — dideoxynivalenol was present in all examined naturally contaminated wheat kernel samples at levels of 1.7 to 7.9% of the level of 4-deoxynivalenol. These findings suggest that more attention should be given to the occurrence of 4,7-dideoxynivalenol in cereals.  相似文献   
7.
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules.  相似文献   
8.
Ionic mechanisms of the transmembrane current evoked by injection of cyclic AMP into identified neurons ofHelix pomatia were investigated by the voltage clamp method. Injection of cyclic AMP into neurons RPa3, LPa2, LPa3, and LPl1 was shown to cause the development of a two-component transmembrane (cyclic AMP) current. The current-voltage characteristic curve of the early component is linear in the region from –40 to –90 mV; the reversal potential of the early component, determined by extrapolation, lies between –5 and +20 mV; the current-voltage characteristic curve of the late component also is linear and has a reversal potential between –55 and –60 mV. A decrease in the sodium concentration in the external medium from 100 to 25 mM led to a decrease in amplitude of the cyclic AMP current and to a shift of the reversal potential for the early component by 30–32 mV toward hyperpolarization. It is suggested that the early component of the cyclic AMP current in neurons RPa3, LPa2, LPa3, and LPl1 is associated with an increase in permeability of the neuron membrane chiefly for sodium ions, whereas the late component is correspondingly connected with permeability for potassium ions. Injection of cyclic AMP also caused the appearance of a transmembrane inward current in neuron LPa8, but it was independent of the holding potential and was unaccompanied by any change in membrane permeability. It is suggested that this current may be due to a change in the activity of the electrogenic ion pump.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 526–532, September–October, 1980.  相似文献   
9.
Steady-state current-voltage characteristics of the membrane and ionic currents arising during changes in membrane potential in bursting neurons ofHelix pomatia were studied by the voltage clamp method. The steady-state current-voltage characteristics of the membrane were shown to have a nonlinear region. Replacement of sodium ions by Tris-HC1 ions in the external solution completely abolishes this nonlinearity. Hyperpolarization of the membrane under voltage clamp conditions leads to the development of an outward current which reaches a maximum and then is inactivated. This current has a reversal potential in the region of the potassium equilibrium potential. Depolarization of the membrane to the threshold value for excitation of uncontrollable regions of the axon hillock causes the appearance of a slow inward current. After reaching a maximum, the inward current falls to zero. A model of generation of waves in a bursting neuron is suggested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 193–202, March–April, 1978.  相似文献   
10.
Changes in the types of electrical activity of bursting neuron RPal ofHelix pomatia were studied. Neuron RPal may either be "silent" or may exhibit bursting activity with waves of membrane potential of low and high amplitude. Changes in activity of this neuron took place spontaneously over a period of tens or hundreds of seconds. Changes in electrical activity in neuron RPal were synchronized with changes in membrane potential in other neurons. Similar changes in electrical activity of neuron RPal can be produced by application of the water-soluble fraction from snail ganglion homogenate, containing "modulating factor," to the soma. It is suggested that the prolonged changes in electrical activity of neuron RPal described above are connected with the action of compounds resembling neurotransmitters or neurohormones, and secreted by other neurons, on it. These compounds reach the neuron continuously or they are bound with the receptors of the neuron for a long enough period of time to produce stationary changes in its membrane conductance.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 398–405, July–August, 1981.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号