首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  2016年   2篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (?)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   
2.
This work explores the heterogeneity of aggregation of polyglutamine fusion constructs in crude extracts of transgenic Caenorhabditis elegans animals. The work takes advantage of the recent technical advances in fluorescence detection for the analytical ultracentrifuge. Further, new sedimentation velocity methods, such as the multi‐speed method for data capture and wide distribution analysis for data analysis, are applied to improve the resolution of the measures of heterogeneity over a wide range of sizes. The focus here is to test the ability to measure sedimentation of polyglutamine aggregates in complex mixtures as a prelude to future studies that will explore the effects of genetic manipulation and environment on aggregation and toxicity. Using sedimentation velocity methods, we can detect a wide range of aggregates, ranging from robust analysis of the monomer species through an intermediate and quite heterogeneous population of oligomeric species, and all the way up to detecting species that likely represent intact inclusion bodies based on comparison to an analysis of fluorescent puncta in living worms by confocal microscopy. Our results support the hypothesis that misfolding of expanded polyglutamine tracts into insoluble aggregates involves transitions through a number of stable intermediate structures, a model that accounts for how an aggregation pathway can lead to intermediates that can have varying toxic or protective attributes. An understanding of the details of intermediate and large‐scale aggregation for polyglutamine sequences, as found in neurodegenerative diseases such as Huntington's Disease, will help to more precisely identify which aggregated species may be involved in toxicity and disease.  相似文献   
3.
We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified.  相似文献   
4.
5.
We describe a quantitative analysis of Acanthamoeba castellanii myosin II rod domain images collected from atomic force microscope experiments. These images reveal that the rod domain forms a novel filament structure, most likely requiring unusual head-to-tail interactions. Similar filaments are seen also in negatively stained electron microscopy images. Truncated myosins from Acanthamoeba and other model organisms have been visualized before, revealing laterally associated bipolar minifilaments. In contrast, the filament structures that we observe are dominated by axial rather than lateral polymerization. The unusually small features in this structure (1-5 nm) required the development of quantitative and statistical techniques for filament image analysis. These techniques enhance the extraction of features that hitherto have been difficult to ascertain from more qualitative imaging approaches. The heights of the filaments are observed to have a bimodal distribution consistent with the diameters of a single rod domain and a pair of close-packed rod domains. Further quantitative analysis indicates that in-plane association is limited to at most a pair of rod domains. Taken together, this implies that the filaments contain no more than four rod domains laterally associated with one another, somewhat less than that seen in bipolar minifilaments. Analysis of images of the filaments decorated with an anti-FLAG antibody reveals head-to-tail association with mean distances between the antibodies of 75 +/- 15 nm. We consider a set of molecular models to help interpret possible structures of the filaments.  相似文献   
6.
Photoelectronically conductive self-assembling peptide-porphyrin assemblies have great potential in their use as biomaterials, owing largely to their environmentally responsive properties. We have successfully designed a coiled-coil peptide that can self-assemble to form mesoscale filaments and serve as a scaffold for porphyrin interaction. In our earlier work, peptide-porphyrin-based biomaterials were formed at neutral pH, but the structures were irregular at the nano- to microscale size range, as judged by atomic force microscopy. We identified a pH in which mesoscale fibrils were formed, taking advantage of the types of porphyrin interactions that are present in well-characterized J-aggregates. We used UV-visible spectroscopy, circular dichroism spectropolarimetry, fluorescence spectroscopy, and atomic force microscopy to characterize these self-assembling biomaterials. We propose a new assembly paradigm that arises from a set of unique porphyrin-porphyrin and porphyrin-peptide interactions whose structure may be readily modulated by changes in pH or peptide concentration.  相似文献   
7.
Porphobilinogen synthase (PBGS) is an obligate oligomer that can exist in functionally distinct quaternary states of different stoichiometries, which are called morpheeins. The morpheein concept describes an ensemble of quaternary structure isoforms wherein different structures of the monomer dictate different multiplicities of the oligomer (Jaffe, E. K. (2005) Trends Biochem. Sci. 30, 490-497). Human PBGS assembles into long-lived morpheeins and has been shown to be capable of forming either a high activity octamer or a low activity hexamer (Breinig, S., Kervinen, J., Stith, L., Wasson, A. S., Fairman, R., Wlodawer, A., Zdanov, A., and Jaffe, E. K. (2003) Nat. Struct. Biol. 10, 757-763). All PBGS monomers contain an alphabeta-barrel domain and an N-terminal arm domain. The N-terminal arm structure varies among PBGS morpheeins, and the spatial relationship between the arm and the barrel dictates the different quaternary assemblies. We have analyzed the structures of human PBGS morpheeins for key interactions that would be predicted to affect the oligomeric assembly. Examples of individual mutations that shift assembly of human PBGS away from the native octamer are R240A and W19A. The alternate morpheeins of human PBGS variants R240A and W19A are chromatographically separable from each other and kinetically distinct; their structure and dynamics have been characterized by native gel electrophoresis, dynamic light scattering, and analytical ultracentrifugation. R240A assembles into a metastable hexamer, which can undergo a reversible conversion to the octamer in the presence of substrate. The metastable nature of the R240A hexamer supports the hypothesis that octameric and hexameric morpheeins of PBGS are very close in energy. W19A assembles into a mixture of dimers, which appear to be stable.  相似文献   
8.
9.
Bacteria and fungi use non-ribosomal peptide synthetases (NRPSs) to produce peptides of broad structural diversity and biological activity, many of which have proven to be of great importance for human health. The impressive diversity of non-ribosomal peptides originates in part from the action of tailoring enzymes that modify the structures of single amino acids and/or the mature peptide. Studying the interplay between tailoring enzymes and the peptidyl carrier proteins (PCPs) that anchor the substrates is challenging owing to the transient and complex nature of the protein–protein interactions. Using sedimentation velocity (SV) methods, we studied the collaboration between the PCPs and cytochrome P450 enzyme that results in the installation of β-hydroxylated amino acid precursors in the biosynthesis of the depsipeptide skyllamycin. We show that SV methods developed for the analytical ultracentrifuge are ideally suited for a quantitative exploration of PCP–enzyme equilibrium interactions. Our results suggest that the PCP itself and the presence of substrate covalently tethered to the PCP together facilitate productive PCP–P450 interactions, thereby revealing one of nature's intricate strategies for installing interesting functionalities using natural product synthetases.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号