首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.

Winter is a challenging period for aquatic research—weather is uncomfortable, ice is hazardous, equipment fails, and daylength is short. Consequently, until recently relatively little research on freshwater fishes has included winter. Telemetry methods for tracking fish and observing movement behavior are an obvious solution to working in harsh conditions because much of the data can be collected remotely, and passive methods collect data year-round without winter maintenance. Yet, many telemetry studies do not collect data during winter or, if they do, only report data from the ice-free seasons while the remaining data are unused. Here, we briefly summarize the advantages and limitations of using telemetry methods in winter, including acoustic and radio telemetry and passive integrated transponder technology, then review the range of questions related to fish ecology, behavior, bioenergetics, and habitat use that can be addressed in winter using telemetry. Our goals are to highlight the untapped potential of winter fish biology and to motivate scientists to revisit their four-season telemetry data and incorporate objectives specific to winter biology in future study plans.

  相似文献   
2.
Understanding predator–prey interactions and food web dynamics is important for ecosystem-based management in aquatic environments, as they experience increasing rates of human-induced changes, such as the addition and removal of fishes. To quantify the post-stocking survival and predation of a prey fish in Lake Ontario, 48 bloater Coregonus hoyi were tagged with acoustic telemetry predation tags and were tracked on an array of 105 acoustic receivers from November 2018 to June 2019. Putative predators of tagged bloater were identified by comparing movement patterns of six species of salmonids (i.e., predators) in Lake Ontario with the post-predated movements of bloater (i.e., prey) using a random forests algorithm, a type of supervised machine learning. A total of 25 bloater (53% of all detected) were consumed by predators on average (± S.D. ) 3.1 ± 2.1 days after release. Post-predation detections of predators occurred for an average (± S.D. ) of 78.9 ± 76.9 days, providing sufficient detection data to classify movement patterns. Tagged lake trout Salvelinus namaycush provided the most reliable classification from behavioural predictor variables (89% success rate) and was identified as the main consumer of bloater (consumed 50%). Movement networks between predicted and tagged lake trout were significantly correlated over a 6 month period, supporting the classification of lake trout as a common bloater predator. This study demonstrated the ability of supervised learning techniques to provide greater insight into the fate of stocked fishes and predator–prey dynamics, and this technique is widely applicable to inform future stocking and other management efforts.  相似文献   
3.
4.
Bloater Coregonus hoyi (n = 48) were implanted with V9DT-2x predation transmitters and monitored on 105 acoustic receivers in eastern Lake Ontario for >6 months. Twenty-three predation events were observed, with predator retention of tags ranging from ≤1 to ≥194 days and 30% of retentions lasting >150 days. Long tag retention times raise concerns for acoustic telemetry analysis and the health of piscivorous predators retaining tags.  相似文献   
5.
  1. Determining the movement and fate of fishes post-stocking is challenging due to the difficulty in monitoring them, particularly immediately after release. Bloater (Coregonus hoyi; Salmonidae) is a deepwater cisco that has been extirpated from Lake Ontario for several decades and is presently the focus of binational restoration stocking efforts; however, there is limited information to evaluate the efficacy of these efforts. The aim of this study was to examine the initial post-release survival, 3D movement, and behaviour of hatchery-reared bloater stocked in Lake Ontario to expand knowledge of post-stocking ecology of fish and inform stocking practices for deepwater ciscoes.
  2. In total, 74 hatchery-reared bloater were tagged with acoustic transmitters with depth and temperature sensors in 2016, 2017, and 2018 and passively monitored on an array of 105 69-kHz acoustic receivers deployed in north-eastern Lake Ontario. Several spatial metrics analysed movements after release to investigate immediate post-stocking survival and behaviour for the first time in a pelagic freshwater forage fish.
  3. Estimated survival for tagged bloater was low (≤42%) and detection periods of live bloater ranged from 0.2 to 12.1 days (mean ± SD: 2.9 ± 2.9 days). Following release, tagged bloater dispersed quickly and exhibited an association with deeper water (>40 m). Despite overlap in space use for some bloater, there was no evidence of schooling behaviour. Bloater underwent extensive diel vertical migration from near bottom to within metres of the surface. These results demonstrated that, despite high initial mortality, some hatchery-reared bloater survived the initial stress of release and displayed characteristic behaviour of the species.
  4. This study demonstrated the value of acoustic telemetry in restoration efforts and revealed survival and behaviour of bloater that has never been observed at this resolution, providing novel information for the management of reintroduced species. Establishment of a self-sustaining population of bloater will help restore fish native to Lake Ontario thus increasing prey fish diversity, improving ecological integrity and resilience, and serving as a model for the reintroduction and management of other native species throughout the Great Lakes.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号