首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   13篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   11篇
  2015年   18篇
  2014年   12篇
  2013年   17篇
  2012年   17篇
  2011年   21篇
  2010年   13篇
  2009年   7篇
  2008年   15篇
  2007年   13篇
  2006年   11篇
  2005年   14篇
  2004年   8篇
  2003年   18篇
  2002年   12篇
  2001年   14篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
1.
A 1.5 kilobase (kb) cDNA clone containing the entire coding region for a regulatory subunit of type I cAMP-dependent protein kinase (RI) was isolated from a human testis cDNA library. The cDNA clone encodes a protein of 381 amino acids that shows 98% and 97% homology to the bovine skeletal muscle RI and rat brain RI, respectively. Northern blot analysis demonstrates two major mRNA-species (1.5 and 3.0 kb) in human testis and one mRNA-species (3.0 kb) in human T-lymphocytes.  相似文献   
2.
Summary Resource utilization by cutthroat trout (CT) and Dolly Varden charr (DV) was studied 8 years after experimental transfers from sympatry had established reproducing allopatric populations in two nearby fishless lakes. Allopatric DV significantly increased their utilization of shallow-dwelling zoobenthos, and increased their vertical distribution in comparison to that in sympatry. In contrast, allopatric CT showed little change in the proportions of major prey types utilized, and, if anything, restricted their vertical distribution in comparison to that in sympatry. The results can be explained by the hypothesis that the resource use of DV is strongly influenced by interspecific competition from CT, whereas CT largely remains unaffected by this interaction. An alternative hypothesis, that lake differences can explain the differences in resource use between sympatry and allopatry, was evaluated by comparing food resource availability and other biotic and abiotic characteristics of the three study lakes. None of these could account for the shift in resource use by DV between sympatry and allopatry, but lake differences may explain why allopatric CT showed a restricted habitat use in comparison with their sympatric donor stock. The results of this whole-lake transfer experiment are consistent with earlier reported field and laboratory studies, and suggest that the aggressive dominance of CT is the most important mechanism by which DV are displaced from littoral and near-surface habitats in sympathy with CT.  相似文献   
3.
We have determined the chromosomal localization of the gene for the catalytic subunit Cα of cAMP-dependent protein kinase (locus PRKACA) to human chromosome 19 using polymerase chain reaction (PCR) and Southern blot analysis of two different somatic cell hybrid mapping panels. In addition, PCR analysis of a chromosome 19 mapping panel revealed the presence of a human Cα-specific amplification product only in cell lines containing the region 19p13.1 to 19q12. Finally, two-color fluorescencein situhybridization to metaphase chromosomes using the human Cα cDNA and human chromosome 19 inter-Alu-PCR product as probes localized the human Cα gene to chromosome region 19p13.1.  相似文献   
4.
5.
Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.  相似文献   
6.
7.
Carrion represents an unpredictable and widely distributed primary food source for vultures and other avian scavengers. Avian scavengers in African savanna ecosystems are reported to rely exclusively on visual stimuli to locate carcasses. However, carnivores’ predation of large mammalian herbivores and subsequent competition for access to the carcass can result in considerable noise, often audible over long distances and for prolonged periods. Vultures and other avian scavengers may therefore detect and respond to these auditory cues, as do the mammalian carnivores alongside which vultures have coevolved, but this has not been investigated to date. Working in the Serengeti ecosystem, Tanzania, we used diurnal auditory broadcasts to simulate predation and competitive carnivore feeding interactions. Based on the current understanding of avian scavenger ecology, we hypothesized that avian responses to call‐in stations would be evoked exclusively by visual, rather than auditory, cues. We therefore predicted that (a) the arrival of avian scavengers at call‐in stations should be preceded and facilitated by mammalian carnivores and that (b) the arrival of avian scavengers would be positively correlated with the number of mammalian scavengers present, which would increase detectability. We recorded 482 birds during 122 separate playback events. In 22% of these instances, avian scavengers arrived first, ruling out responses based exclusively on visual observations of mammalian carnivores, thereby contradicting our first prediction. Furthermore, the first avian arrivals at survey sessions were inversely related to the number of hyenas and jackals present, contradicting our second prediction. Since no bait or carcasses were used during the experiments, these responses are indicative of the birds’ ability to detect and respond to audio stimuli. Our findings challenge the current consensus of sensory perception and foraging in these species and provide evidence that avian scavengers have the ability to use sound to locate food resources.  相似文献   
8.
Use of fast-growing domesticated and/or genetically modified strains of fish is becoming increasingly common in aquaculture, increasing the likelihood of deliberate or accidental introductions into the wild. To date, their ecological impacts on ecosystems remain to be quantified. Here, using a controlled phenotype manipulation by implanting growth hormone in juvenile Atlantic salmon (Salmo salar), we found that growth-enhanced fish display changes in several phenotypic traits known to be important for ecosystem functioning, such as habitat use, morphology and excretion rate. Furthermore, these phenotypic changes were associated with significant impacts on the invertebrate community and key stream ecosystem functions such as primary production and leaf-litter decomposition. These findings provide novel evidence that introductions of growth-enhanced fish into the wild can affect the functioning of natural ecosystems and represent a form of intraspecific invasion. Consequently, environmental impact assessments of growth-enhanced organisms need to explicitly consider ecosystem-level effects.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号