首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   7篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1992年   1篇
排序方式: 共有30条查询结果,搜索用时 265 毫秒
1.
2.
Fire histories were compared between the south-western United States and northern Patagonia, Argentina using both documentary records (1914–87 and 1938–96, respectively) and tree-ring reconstructions over the past several centuries. The two regions share similar fire–climate relationships and similar relationships of climatic anomalies to the El Niño–Southern Oscillation (ENSO). In both regions, El Niño events coincide with above-average cool season precipitation and increased moisture availability to plants during the growing season. Conversely, La Niña events correspond with drought conditions. Monthly patterns of ENSO indicators (southern oscillation indices and tropical Pacific sea surface temperatures) preceding years of exceptionally widespread fires are highly similar in both regions during the 20th century. Major fire years tend to follow the switching from El Niño to La Niña conditions. El Niño conditions enhance the production of fine fuels, which when desiccated by La Niña conditions create conditions for widespread wildfires. Decadal-scale patterns of fire occurrence since the mid-17th century are highly similar in both regions. A period of decreased fire occurrence in both regions from c. 1780–1830 coincides with decreased amplitude and/or frequency of ENSO events. The interhemispheric synchrony of fire regimes in these two distant regions is tentatively interpreted to be a response to decadal-scale changes in ENSO activity. The ENSO–fire relationships of the south-western USA and northern Patagonia document the importance of high-frequency climatic variation to fire hazard. Thus, in addition to long-term trends in mean climatic conditions, multi-decadal scale changes in year-to-year variability need to be considered in assessments of the potential influence of climatic change on fire regimes.  相似文献   
3.
4.
Plant cover plays a major role in shaping the nature of recruitment microsites through direct (resource mediated) and indirect (consumer mediated) interactions. Understorey plants may differentially affect seedling establishment, thus contributing to regeneration-niche separation among canopy tree species. We examined patterns of early tree seedling survival resulting from interactive effects of understorey bamboo (Chusquea culeou) and resident consumers in a mixed temperate Patagonian forest, Argentina. Newly germinated seedlings of Nothofagus dombeyi and Austrocedrus chilensis were planted in bamboo thickets and non-bamboo patches, with or without small-vertebrate exclosures. We found species-specific patterns of seedling survival in relation to bamboo cover. Nothofagus survival was generally low but increased under bamboo, irrespective of cage treatment. Desiccation stress accounted for most Nothofagus mortality in open, non-bamboo areas. In contrast, Austrocedrus survival was highest in non-bamboo microsites, as most seedlings beneath bamboo were killed by small vertebrates through direct consumption or non-trophic physical damage. There was little evidence for a negative impact of bamboo on tree seedling survival attributable to resource competition. The balance of simultaneous positive and negative interactions implied that bamboo presence facilitated Nothofagus early establishment but inhibited Austrocedrus recruitment via apparent competition. These results illustrate the potential for dominant understorey plants to promote microsite segregation during early stages of recruitment between tree seedlings having different susceptibilities to water stress and herbivory. We recognise, however, that patterns of bamboo–seedling interactions may be conditional on moisture levels and consumer activity during establishment. Hence, both biotic and abiotic heterogeneity in understorey environments should be incorporated into conceptual models of regeneration dynamics and tree coexistence in forest communities.  相似文献   
5.
Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought‐induced mortality rates differ among global biomes and whether functional traits influence the risk of drought‐induced mortality. To address these uncertainties, we performed a global meta‐analysis of 58 studies of drought‐induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global‐scale response, where mortality increased with drought severity [log mortality (trees trees?1 year?1) increased 0.46 (95% CI = 0.2–0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought‐induced tree mortality and suggest that mortality could become increasingly widespread in the future.  相似文献   
6.
The generalization that plant communities increase in flammability as they age and invariably lead to resilient self-organized landscape mosaics is being increasingly challenged. Plant communities often exhibit rapidly saturating or even hump-shaped age-flammability trajectories and landscapes often display strong non-linear behaviors, abrupt shifts, and self-reinforcing alternative community states. This plethora of fire-landscape interactions calls for a more general model that considers alternative age-flammability rules. We simulated landscape dynamics assuming communities that (1) increase in flammability with age and (2) gain flammability up to a certain age followed by a slight and moderate loss to a constant value. Simulations were run under combinations of ignition frequency and interannual climatic variability. Age-increasing fire probability promoted high resilience to changes in ignition frequency and climatic variability whereas humpbacked-shaped age-flammability led to strong non-linear behaviors. Moderate (20%) reductions in mature compared to peak flammability produced the least resilient behaviors. The relatively non-flammable mature forest matrix intersected by young flammable patches is prone to break up and disintegrate with slight increases in ignition/climate variability causing large-scale shifts in the fire regime because large fires were able to sweep through the more continuous young/flammable landscape. Contrary to the dominant perception, fire suppression in landscapes with positive feedbacks may effectively reduce fire occurrence by allowing less flammable later stage communities composed of longer lived, obligate seeders to replace earlier stages of light demanding, often more flammable resprouters. Conversely, increases in anthropogenic ignitions, a common global trend of many forested regions may, in synergism with increased climate variability, induce abrupt shifts, and large-scale forest degradation.  相似文献   
7.
Aim To investigate the differential effects of position within gaps, coarse woody debris and understorey cover on tree seedling survival in canopy gaps in two old‐growth Nothofagus pumilio (Poepp. & Endl.) Krasser forests and the response of this species to gaps in two forests located at opposite extremes of a steep rainfall gradient. Location Nahuel Huapi National Park, at 41° S in north‐western Patagonia, Argentina. Methods In both study sites, seedlings were transplanted to experimental plots in gaps in three different positions, with two types of substrate (coarse woody debris or forest floor), and with and without removal of understorey vegetation. Survival of seedlings was monitored during two growing seasons. Soil moisture and direct solar radiation were measured once in mid‐summer. Seedling aerial biomass was estimated at the end of the experiment. Results Mid‐summer soil water potential was lowest in the centre of gaps, in plots where the understorey had been removed, and highest at the northern edges of gaps. Direct incoming radiation was highest in gap centres and southern edges, and lowest at northern edges. Seedling mortality was highest in gap centres, in both sites. Coarse woody debris had a positive effect on seedling survival during summer in the mesic forest and during winter in the xeric forest. The removal of understorey cover had negative effects in gap centres during summer. Seedling final aerial biomass was positively affected by understorey removal and by soil substrate in both sites. In the dry forest gaps, seedling growth was highest in northern edges, whereas it was highest in gap centres in the mesic forest. Overall growth was positively related to survival in the xeric forest, and negatively related in the mesic forest. Main conclusions Survival and growth were facilitated by the shade of gap‐surrounding trees only in the xeric forest. Understorey vegetation of both forests facilitated seedling survival in exposed microsites but competed with seedling growth. Nurse logs were an important substrate for seedling establishment in both forests; however, causes of this pattern differed between forests. Water availability positively controls seedling survival and growth in the xeric forest while in the mesic forest, survival and growth are differentially controlled by water and light availability, respectively. These two contrasting old‐growth forests, separated by a relatively short distance along a steep rainfall gradient, had different yet unexpected microenvironmental controls on N. pumilio seedling survival and growth. These results underscore the importance of defining microscale limiting factors of tree recruitment in the context of large‐scale spatial variation in resources.  相似文献   
8.
9.
In South America, 94% of dry‐temperate lands present some degree of environmental degradation, highlighting the need for ecological restoration. We analyzed geographic patterns of genetic variation in Austrocedrus chilensis, a dominant conifer of the steppe‐forest ecotone in the eastern Andes, to examine its potential for restoration. We sampled 67 locations in Argentina and estimated genetic parameters to determine the effects of historical factors affecting diversity, together with inbreeding and gene flow, using 12 allozyme loci. Genetic diversity decreased southwards in eastern populations, which are marginal for the range of the species and patchily distributed, while high genetic admixture was detected in continuous western populations, possibly reflecting postglacial migrations from northern and eastern sources. Higher inbreeding (FIS > 0.14) was recorded in northern compared with southern populations, attributed to the impact of recent bottlenecks resulting from anthropogenic fires. Gene flow was found to be moderate overall (FST = 0.12). The implications of these results for restoration actions focusing on Austrocedrus were explored. Relatively small, inbred yet genetically diverse northern populations should be the subject of passive restoration efforts, while experimental common gardens should be established toward the south, to support active restoration approaches. This illustrates how ahead of time information on patterns of genetic variation can support restoration efforts for dryland tree species.  相似文献   
10.
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large‐scale forest mortality events will have far‐reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die‐off patterns. Furthermore, as trees are sessile and long‐lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self‐thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole‐tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large‐scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号