首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   21篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   7篇
  2014年   6篇
  2013年   4篇
  2012年   7篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有133条查询结果,搜索用时 140 毫秒
1.
Localization of Usher syndrome type II to chromosome 1q   总被引:17,自引:0,他引:17  
Usher syndrome is characterized by congenital hearing loss, progressive visual impairment due to retinitis pigmentosa, and variable vestibular problems. The two subtypes of Usher syndrome, types I and II, can be distinguished by the degree of hearing loss and by the presence or absence of vestibular dysfunction. Type I is characterized by a profound hearing loss and totally absent vestibular responses, while type II has a milder hearing loss and normal vestibular function. Fifty-five members of eight type II Usher syndrome families were typed for three DNA markers in the distal region of chromosome 1q: D1S65 (pEKH7.4), REN (pHRnES1.9), and D1S81 (pTHH33). Statistically significant linkage was observed for Usher syndrome type II with a maximum multipoint lod score of 6.37 at the position of the marker THH33, thus localizing the Usher type II (USH2) gene to 1q. Nine families with type I Usher syndrome failed to show linkage to the same three markers. The statistical test for heterogeneity of linkage between Usher syndrome types I and II was highly significant, thus demonstrating that they are due to mutations at different genetic loci.  相似文献   
2.
Usher Syndrome Type 1 is an autosomal recessive disease characterized by profound congenital hearing impairement and vestibular dysfunction followed by the onset of retinitis pigmentosa in childhood or early adolescence. Members of the Usher Syndrome Consortium, whose objective is to locate and isolate the genes for Usher syndrome, have pooled linkage data from 36 families with 111 affected individuals. We report the analysis of 206 blood group, protein, and DNA marker polymorphisms. No evidence of linkage heterogeneity among families was found for any of the markers studied; the negative lod scores exclude the locus for this disease from about 39% of the genome. Our results indicate the regions of the genome to which our continuing efforts should be directed.  相似文献   
3.
Localization of two genes for Usher syndrome type I to chromosome 11.   总被引:11,自引:0,他引:11  
The Usher syndromes (USH) are autosomal recessive diseases characterized by congenital sensorineural hearing loss and progressive pigmentary retinopathy. While relatively rare in the general population, collectively they account for approximately 6% of the congenitally deaf population. Usher syndrome type II (USH2) has been mapped to chromosome 1q (W. J. Kimberling, M. D. Weston, C. M?ller, et al., 1990, Genomics 7: 245-249; R. A. Lewis, B. Otterud, D. Stauffer, et al., 1990, Genomics 7: 250-256), and one form of Usher syndrome type I (USH1) has been mapped to chromosome 14q (J. Kaplan, S. Gerber, D. Bonneau, J. Rozet, M. Briord, J. Dufier, A. Munnich, and J. Frezal, 1990. Cytogenet. Cell Genet. 58: 1988). These loci have been excluded as regions of USH genes in our data set, which is composed of 8 French-Acadian USH1 families and 11 British USH1 families. Both of these sets of families show linkage to loci on chromosome 11. Linkage analysis demonstrates locus heterogeneity between these sets of families, with the French-Acadian families showing linkage to D11S419 (Z = 4.20, theta = 0) and the British families showing linkage to D11S527 (Z = 6.03, theta = 0). Genetic heterogeneity of the data set was confirmed using HOMOG and the M test (log likelihood ratio > 10(5)). These results confirm the presence of two distinct USH1 loci on chromosome 11.  相似文献   
4.
Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization establishes the existence of a new and independent locus for Usher syndrome.  相似文献   
5.
Usher syndrome type 1b (USH1B) is an autosomal recessive disorder characterized by congenital profound hearing loss, vestibular abnormalities, and retinitis pigmentosa. The disorder has recently been shown to be caused by mutations in the myosin VIIa gene (MYO7A) located on 11q14. In the current study, a panel of 189 genetically independent Usher I cases were screened for the presence of mutations in the N-terminal coding portion of the motor domain of MYO7A by heteroduplex analysis of 14 exons. Twenty-three mutations were found segregating with the disease in 20 families. Of the 23 mutations, 13 were unique, and 2 of the 13 unique mutations (Arg212His and Arg212Cys) accounted for the greatest percentage of observed mutant alleles (8/23, 31%). Six of the 13 mutations caused premature stop codons, 6 caused changes in the amino acid sequence of the myosin VIIa protein, and 1 resulted in a splicing defect. Three patients were homozygotes or compound heterozygotes for mutant alleles; these three cases were Tyr333Stop/Tyr333Stop, Arg212His-Arg302His/Arg212His-Arg302His, and IVS13nt-8c-->g/Glu450Gln. All the other USH1B mutations observed were simple heterozygotes, and it is presumed that the mutation on the other allele is present in the unscreened regions of the gene. None of the mutations reported here were observed in 96 unrelated control samples, although several polymorphisms were detected. These results add three patients to single case reported previously where mutations have been found in both alleles and raises the total number of unique mutations in MYO7A to 16.  相似文献   
6.
Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder associated with external-, middle-, and inner-ear malformations, branchial cleft sinuses, cervical fistulas, mixed hearing loss, and renal anomalies. The gene for BOR was mapped to the long arm of chromosome 8q. Several polymorphic dinucleotide repeat markers were investigated for linkage in two large BOR families, and the region of localization was refined. Two-point linkage analysis yielded the maximum lod scores of 7.44 at theta = .03 and 6.71 at theta = .04, with markers D8S279 and D8S260, respectively. A multipoint analysis was carried out to position the BOR gene with a defined region using markers D8S165, D8S285, PENK, D8S166, D8S260, D8S279, D8S164, D8S286, D8S84, D8S275, D8S167, D8S273, and D8S271. Haplotype analysis of recombination events at these polymorphic loci was also performed in multigeneration BOR kindreds. The linkage analysis and analysis of recombination events identified markers that clearly flank the BOR locus. The order was determined to be D8S260-BOR-D8S279 at odds > 10(3):1 over the other possible orders. This flanking markers provide a resource for high-resolution mapping toward cloning and characterizing the BOR gene.  相似文献   
7.
Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization.  相似文献   
8.
Previous studies on flagellar adhesion in chlamydomonas (Snell, W. and S. Roseman. 1979. J. Biol. Chem. 254:10820-10829.) have shown that as gametes adhere to flagella isolated from gametes of the opposite mating type, the adhsiveness of the added flagella but not of the gametes is lost. The studies reported here show that the addition of protein synthesis inhibitors (cycloheximide [CH] or anisomycin) to the medium of such cell- flagella mixtures causes the cells to lose their adhesiveness. This loss, however, occurs only after the cells have interacted with 4-8 flagella/cell and does not occur if the cells are kept in CH (7 h) without aggregating. The availability of an impotent (imp) mating type plus (MT(+)) mutant (provided by U.W. Goodenough), which adheres but is unable to undergo the fusion that normally follows adhesion, made it possible to determine whether a similar loss of adhesiveness occurs in mixtures of matting type minus (mt(-)) and imp mt(+) gametes. In the absence of inhibitor, mt(-) and imp mt(+) gametes adhered to each other (without fusing) for several hours; however, in the presence of CH or anisomycin, the gametes began to de-adhere 35 min after mixing, and, by 90 min, 100 percent of the cells were single again. This effect was reversible, and the rapid turnover of cells were single again. This effect was reversible, and the rapid turnover of molecules involved in adhesion occurred only during adhesion inasmuch as gametes pretreated for 4 h with CH were able to aggregate in CH for the same length of time as nonpretreated cells aggregated in CH. By the addition of CH at various times after the mt(-) and imp mt(+) gametes were mixed, measurements were made of the “pool size” of the molecules involved in adhesion. The pool reached a minimum after 25 min of aggregation, rapidly increased for the next 25 min, and then leveled off at the premixing level. These results suggest that flagellar adhesion in chlamydomonas causes modification of surface molecules (receptors, ligands), which brings about their inactivation and stimulates their replacement.  相似文献   
9.
10.
We have ascertained a multi-generation family with apparent autosomal recessive non-syndromic childhood hearing loss (DFNB). Failure to demonstrate linkage in a genome-wide scan with 300 polymorphic markers has suggested genetic heterogeneity for the hearing loss in this family. This heterogeneity could be demonstrated by analysis of candidate loci and genes for DFNB. Patients in one branch of the family (branch C) are homozygous for the 35delG mutation in the GJB2 gene (DFNB1). Patients in two other branches (A and B) carry two new mutations in the cadherin 23 ( CDH23) gene (DFNB12). A homozygous CDH23 c.6442G-->A (D2148N) mutation is present in branch A. Patients in branch B are compound heterozygous for this mutation and the c.4021G-->A (D1341N) mutation. The substituted aspartic acid residues are highly conserved and are part of the calcium-binding sites of the extracellular cadherin (EC) domains. Molecular modeling of the mutated EC domains of CDH23 based on the structure of E-cadherin indicates that calcium-binding is impaired. In addition, other aspartic and glutamic acid residue substitutions in the highly conserved calcium-binding sites reported to cause DFNB12 are also likely to result in a decreased affinity for calcium. Since calcium provides rigidity to the elongated structure of cadherin molecules enabling homophilic lateral interaction, these mutations are likely to impair interactions of CDH23 molecules either with CDH23 or with other proteins. DFNB12 is the first human disorder that can be attributed to inherited missense mutations in the highly conserved residues of the extracellular calcium-binding domain of a cadherin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号