首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   50篇
  2021年   4篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   18篇
  2014年   7篇
  2013年   10篇
  2012年   23篇
  2011年   25篇
  2010年   15篇
  2009年   4篇
  2008年   17篇
  2007年   12篇
  2006年   12篇
  2005年   13篇
  2004年   15篇
  2003年   4篇
  2002年   11篇
  2001年   10篇
  2000年   15篇
  1999年   17篇
  1997年   5篇
  1996年   4篇
  1994年   9篇
  1992年   6篇
  1991年   9篇
  1990年   5篇
  1989年   9篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   8篇
  1983年   12篇
  1982年   5篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1978年   6篇
  1977年   9篇
  1976年   5篇
  1975年   2篇
  1973年   2篇
  1971年   2篇
  1967年   2篇
  1964年   2篇
  1962年   3篇
  1961年   2篇
  1958年   2篇
  1954年   3篇
排序方式: 共有422条查询结果,搜索用时 31 毫秒
1.
A recombination map of the human X-chromosome   总被引:2,自引:0,他引:2  
Summary A family with 11 normal boys has been typed with DNA probes spanning the whole of the X-chromosome to observe directly the recombination events in 11 meioses from one female. This has (a) identified apparent recombination hot-spots on the X-chromosome; (b) shown the positions and numbers of cross-overs that have occurred in the p and q arms; (c) not shown any cross-overs in the centromeric region and (d) enabled the calculation of the genetic length of the X-chromosome.  相似文献   
2.
3.
4.
Western immunoblots of BHK-21 cell lysates probed with the highly virulent GDVII and the less virulent BeAn strains of Theiler's murine encephalomyelitis virus (TMEV) revealed predominant binding to a 34-kDa membrane protein and much lower levels of binding to 100- and 18-kDa membrane proteins. Complete inhibition of virus binding to both the 34- and 18-kDa membrane species by excess unlabeled TMEV demonstrated specificity of binding. Virus binding was also blocked by wheat germ agglutinin, which specifically binds to sialic acid residues and blocks TMEV binding to whole BHK-21 cells. Radiolabeled TMEV also bound to 100-, 34-, and 18-kDa membrane proteins expressed on other TMEV permissive cell lines but not on the nonpermissive cell lines tested. These data suggest that a 34-kDa cellular protein may be the primary determinant of susceptibility to TMEV infection by mediating the binding of GDVII and BeAn viruses to susceptible cells.  相似文献   
5.
Friend spleen focus-forming virus (SFFV) codes for a transport-defective envelope glycoprotein designated gp52, which is responsible for the leukemogenic properties of the virus. gp52 is a monotopic integral membrane protein anchored in the membrane by a stretch of hydrophobic amino acid residues located near the carboxy terminus of the molecule. We have constructed a mutant SFFV envelope gene in which the sequences that code for the hydrophobic membrane-spanning domain have been deleted, and we expressed this gene by using recombinant vaccinia virus vectors or retroviral vectors. The mutant SFFV envelope gene was found to encode a truncated glycoprotein (gp52t) which was also transport defective; a majority of gp52t remained cell associated, while a small proportion of the molecules underwent oligosaccharide processing. The processed form of gp52t was secreted from the cells. Retroviral vectors carrying the mutant SFFV envelope gene were found to be nonpathogenic in adult mice. These results indicate that the hydrophobic membrane-spanning region of gp52 is required for pathogenicity of SFFV and suggest that these sequences may play a role in signal transduction. The results also indicate that the transport defect of SFFV gp52 is due to structural features of the ectodomain of the molecule.  相似文献   
6.
We have further characterized the 5-HT3 receptors in rat and rabbit tissues by evaluating the binding of the 5-HT3 receptor ligand, [3H]GR67330 to homogenates of rabbit ileum, rat ileum and rat brain (entorhinal cortex). In each tissue specific [3H]GR67330 binding represented a single saturable, high affinity site (Kd = 0.14, 0.18, 0.076 nM in rabbit ileum, rat ileum and rat brain respectively). The densities of sites present in rabbit and rat ileum were similar to that present in rat brain (Bmax = 63, 47, 72 fmol/mg protein in rabbit ileum, rat ileum and rat brain respectively).

In each tissue, 5-HT3 receptor agonists and antagonists potently competed for [3H]GR67330 binding. Derived inhibition constants were similar in rat ileum and brain. However marked differences in IC50s were apparent for rabbit ileum compared with rat brain or ileum. These were most apparent with agonists. Thus, mCPBG [1-(meta-chlorophenylbiguanide)], phenylbiguanide, 5-HT and 2-methyl 5-HT were at least 5 times less potent to inhibit [3H]GR67330 binding in rabbit ileum than rat brain. The most pronounced differences were evident with phenylbiguanide and mCPBG which were 70 and 300 times less potent in the rabbit ileum respectively compared with the rat tissues. These differences were unlikely to be due to depletion effects because tissue combination experiments (rabbit ileum and rat brain) yielded biphasic inhibition curves for phenylbiguanide with affinities for each component similar to those in the individual tissues. Antagonist affinities also varied between the rabbit and rat tissues, although less markedly. Amongst the antagonists, the most marked differences were apparent with SDZ 206–830 and quipazine each being 10 times less potent to inhibit binding to rabbit than rat tissue.

Hill coefficients for inhibition of binding varied with tissue. In rat brain, as previously described for [3H]GR67330, Hill coefficients for agonist (and quipazine) inhibition of binding were greater than unity. This was less marked in rat and rabbit ileum tissues.

The present studies provide further evidence for species variation in 5-HT3 receptors.  相似文献   

7.
[3H]Piflutixol binding to rat striatal membrane preparations identifies both D-1 and D-2 sites. We used [3H]piflutixol to characterise those binding sites present in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-solubilised rat striatal preparations. The specific binding of [3H]piflutixol, as defined using cis-flupenthixol, to CHAPS-solubilised rat striatal tissue was saturable and of high affinity. Specific [3H]piflutixol binding to the solubilised preparations was displaced stereoselectively by the isomers of butaclamol and to an equal extent by both cis-flupenthixol and (+/-)-sulpiride. A positive correlation was found between the capacity of a range of drugs to displace [3H]piflutixol binding and the displacement of [3H]spiperone to the same preparations. The Bmax of [3H]piflutixol binding was not different from that of [3H]spiperone binding to the same preparation. These studies suggest that, in contrast to specific binding of membrane preparations, the specific binding of [3H]piflutixol to CHAPS-solubilised preparations involves mainly D-2 sites. Specific [3H]piflutixol binding, in contrast to [3H]spiperone binding, showed only slow dissociation from soluble preparations. The binding of [3H]piflutixol to CHAPS-solubilised preparations was retained during passage through a gel filtration column. This prelabelling of solubilised striatal preparations using [3H]piflutixol may aid in the purification of CHAPS-solubilised rat striatal D-2 sites.  相似文献   
8.
We characterized a group of acidic proteins of bovine chromaffin granules with an antiserum raised against a protein described by Rosa and Zanini [Eur. J. Cell Biol. 31, 94-98 (1983)] in pituitary gland. In adrenal medulla the proteins reacting with this antiserum are confined to chromaffin granules. Their largest component has a Mr of 86,000 and a pI of 5.0. In addition six proteins of lower molecular weight are recognized by this antiserum. In a cell-free system only one protein is synthesized that can be precipitated with this antiserum. The properties of these proteins are very similar to those of the previously described chromogranins A and B; however, there is no immunological cross-reaction between these protein groups. We suggest this third group of acidic proteins of chromaffin granules be named chromogranins C.  相似文献   
9.
10.
Human cytomegalovirus (HCMV) infection causes a rapid, progressive disruption of the host cell cytoskeleton that correlates with actin depolymerization. Whole-mount (3D) electron microscopy was used to analyze the cytoskeleton of uninfected and HCMV-infected human lung fibroblast cells. Within 2 min of HCMV infection, localized areas of cytoskeletal disruption were observed. Disruption extended throughout the cytoplasm during the ensuing 45 to 90 min of infection and resulted in generalized cytoskeletal disorganization. Actin depolymerization occurred, as indicated by an increase in DNase I inhibition and alteration in the fluorescence pattern with rhodamine-conjugated phalloidin. Thus, actin appears to be the primary cytoskeletal target involved during HCMV infection. Fractionation of the virus seed inoculum showed that development of DNase I inhibitory activity in infected cells was associated only with the virus-containing fractions. Cytochalasin B treatment at early times of HCMV infection stimulated progeny virus production. This study demonstrates that rapid cytoskeletal disruption occurs during early periods of HCMV infection and indicates that actin depolymerization facilitates viral infectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号