首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2012年   1篇
  2004年   1篇
  2001年   3篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Peripherin/rds is an integral membrane protein required for the elaboration of rod and cone photoreceptor outer segments in the vertebrate retina; it causes a surprising variety of progressive retinal degenerations in humans and dysmorphic photoreceptors in murine models if defective or absent. (Peripherin/rds is also known as photoreceptor peripherin, peripherin/rds, rds/peripherin, rds, and peripherin-2.) Peripherin/rds appears to act as a structural element in outer segment architecture. However, neither its function at the molecular level nor its role in retinal disease processes are well understood. This report initiates a systematic investigation of protein domain structure and function by examining the molecular and cellular consequences of a series of 14 insertional mutations distributed throughout the polypeptide sequence. Protein expression, disulfide bonding, sedimentation velocity, and subcellular localization of the COS-1 cell-expressed mutant variants were examined to test the hypothesis that protein folding and tetrameric subunit assembly are mediated primarily by EC2, a conserved extracellular/intradiskal domain. Protein folding and tetrameric subunit assembly were not affected by insertion of either an uncharged dipeptide (GA) or a highly charged hendecapeptide (GDYKDDDDKAA) into any one of nine sites residing outside of EC2 as assayed by nonreducing Western blot analysis, sedimentation velocity, and subcellular localization. In contrast, insertions at five positions within the EC2 domain did cause either gross protein misfolding (two sites) or a reduction in protein sedimentation coefficient (two sites) or both (one site). These results indicate that although the vast majority of extramembranous polypeptide sequence makes no measurable contribution to protein folding and tetramerization, discrete regions within the EC2 domain do contain determinants for normal subunit assembly. These findings raise the possibility that multiple classes of structural perturbation are produced by inherited defects in peripherin/rds and contribute to the observed heterogeneity of retinal disease phenotypes.  相似文献   
2.
Phosphorylation of the tumor suppressor protein, retinoblastoma (pRb), regulates the progression of the cell cycle. Previous work from this laboratory had shown that estradiol (E(2)) regulates tumor suppressor proteins, p53 and retinoblastoma in breast cancer cells. In the present study, we have examined the phosphorylation of pRB in T47D breast cancer cells following treatments with R5020 and antiprogestins. In growth medium containing serum depleted of endogenous steroids by charcoal treatment, pRb appeared mainly in its hypophosphorylated form. Addition of 10 nM R5020 to the culture medium caused hyperphosphorylation of pRb within 24 h, but the hypophosphorylated form of pRb began to accumulate after 72 h. Upon prolonged R5020 treatment (72-96 h), pRb was detected exclusively in its hypophosphorylated form. While treatment of cells with R5020 caused a transient increase in the level of cyclin D1, E(2) addition caused a sustained increase in the level of cyclin D1 consistent with its role in stimulating pRb phosphorylation. Antagonists of both estrogen receptor (ER) and progesterone receptor (PR) blocked the E(2) and R5020-induced pRb phosphorylation, respectively. These results suggest that R5020 induces pRb phosphorylation via a transient increased expression of cyclin D1, whereas E(2) treatment results in sustained expression of cyclin D1 and increased pRb phosphorylation. Furthermore, R5020 effects on pRb phosphorylation appear PR-mediated as no cross-antagonism of pRb phosphorylation was observed: the R5020 effects were blocked by RU486 and ZK98299, but not by the pure ER antagonist, ICI 182, 780 (ICI).  相似文献   
3.
T47D cells, cultured in medium containing serum stripped of endogenous steroids, proliferate in response to treatment with the progesterone receptor (PR) agonist, R5020 or the PR agonist/antagonist, RU486, whereas the full PR antagonist, ZK98299 has no proliferative effects. Under estrogenized conditions, all of the PR ligands tested inhibit cell growth [23]. In order to determine whether the levels or phosphorylation state of PR are reflected in the growth patterns of T47D cells, we monitored the effects of these PR ligands on the immunoblotted PR band intensities, the relative intensities, of PR-A and PR-B, and their phosphorylation states that are reflected in their altered mobility during SDS-PAGE. Under conditions where the PR ligands inhibit cell proliferation, each ligand had distinctively different qualitative and quantitative effects on PR. Short term treatment of the cells with R5020 or RU486 induced a characteristic phosphorylation-dependent upshift of both PR-A and PR-B. The phosphorylated PR was stable for up to 4 days after treatment of the cells with RU486, but was down regulated between 6-24 h after treatment with R5020. No replenishment of PR in cells treated with R5020 was detected. ZK98299, at concentrations tested, had no qualitative or quantitative effects on PR. Culturing cells for 8 days in medium containing steroid-depleted serum caused a significant reduction in the PR band intensity without causing a change in the ratio of PR-A and PR-B or their phosphorylation states. This decrease in the PR band intensity was reversed by maintaining the cells in 1 nM estrogen, but was potentiated by RU486 or ZK98299. These observations support the view that decreased PR levels may play a role in the stimulatory effects of R5020 and RU486 when cells are cultured under non-estrogenized conditions.  相似文献   
4.
Inherited defects in retinal photoreceptor structure impair visual transduction, disrupt relationship with the retinal pigment epithelium (RPE), and compromise cell viability. A variety of progressive retinal degenerative diseases can result, and knowledge of disease etiology remains incomplete. To investigate pathogenic mechanisms in such instances, we have characterized rod photoreceptor and retinal gene expression changes in response to a defined insult to photoreceptor structure, using the retinal degeneration slow (rds) mouse model. Global gene expression profiling was performed on flow-sorted rds and wild-type rod photoreceptors immediately prior and subsequent to times at which OSs are normally elaborated. Dysregulated genes were identified via microarray hybridization, and selected candidates were validated using quantitative PCR analyses. Both the array and qPCR data revealed that gene expression changes were generally modest and dispersed amongst a variety of known functional networks. Although genes showing major (>5-fold) differential expression were identified in a few instances, nearly all displayed transient temporal profiles, returning to WT levels by postnatal day (P) 21. These observations suggest that major defects in photoreceptor cell structure may induce early homeostatic responses, which function in a protective manner to promote cell viability. We identified a single key gene, Egr1, that was dysregulated in a sustained fashion in rds rod photoreceptors and retina. Egr1 upregulation was associated with microglial activation and migration into the outer retina at times subsequent to the major peak of photoreceptor cell death. Interestingly, this response was accompanied by neurotrophic factor upregulation. We hypothesize that activation of Egr1 and neurotrophic factors may represent a protective immune mechanism which contributes to the characteristically slow retinal degeneration of the rds mouse model.  相似文献   
5.
Inherited defects in the RDS gene cause a multiplicity of progressive retinal diseases in humans. The gene product, peripherin/rds (P/rds), is a member of the tetraspanin protein family required for normal vertebrate photoreceptor outer segment (OS) architecture. Although its molecular function remains uncertain, P/rds has been suggested to catalyze membrane fusion events required for the OS renewal process. This study investigates the importance of two charged residues within a predicted C-terminal helical region for protein biosynthesis, localization, and interaction with model membranes. Targeted mutagenesis was utilized to neutralize charges at Glu(321) and Lys(324) individually and in combination to generate three mutant variants. Studies were conducted on variants expressed as 1) full-length P/rds in COS-1 cells, 2) glutathione S-transferase fusion proteins in Escherichia coli, and 3) membrane-associated green fluorescent protein fusion proteins in transgenic Xenopus laevis. None of the mutations affected biosynthesis of full-length P/rds in COS-1 cells as assessed by Western blotting, sedimentation velocity, and immunofluorescence microscopy. Although all mutations reside within a recently identified localization signal, none altered the ability of this region to direct OS targeting in transgenic X. laevis retinas. In contrast, individual or simultaneous neutralization of the charged amino acids Glu(321) and Lys(324) abolished the ability of the C-terminal domain to promote model membrane fusion as assayed by lipid mixing. These results demonstrate that, although overlapping, C-terminal determinants responsible for OS targeting and fusogenicity are separable and that fusogenic activity has been uncoupled from other protein properties. The observation that subunit assembly and OS targeting can both proceed normally in the absence of fusogenic activity suggests that properly assembled and targeted yet functionally altered proteins could potentially generate pathogenic effects within the vertebrate photoreceptor.  相似文献   
6.
Hormonal regulation of tumor suppressor proteins in breast cancer cells   总被引:3,自引:0,他引:3  
This laboratory is studying hormonal regulation of tumor suppressor proteins, p53 and retinoblastoma (pRB). Estrogen receptor and progesterone receptor positive human breast cancer cell lines, T47D and MCF-7, were utilized for determining influence of hormonal and antihormonal agents on the level of expression of p53, state of phosphorylation of pRB, and rate of cell proliferation. The expression of p53 in T47D cells grown for 4–5 days in culture medium containing charcoal-treated (stripped) fetal bovine serum declined gradually to 10% of the level seen in control (whole serum, non charcoal-treated) groups. Supplementation of culture medium containing stripped serum with 0.1–1 nM estradiol (E2) restored p53 to its level seen in the control within 6–24 h. Under above conditions, treatment of cells with R5020 or RU486 reduced (15–30%) the level of p53. Incubation of cells in E2-containing growth medium caused cell proliferation and hyperphosphorylation of pRB; the latter effect was seen maximally between 24–72 h. The E2-induced hyperphosphorylation of pRB and increase in the level of p53 were sensitive to the presence of ICI and 4-hydroxy tamoxifen (OHT). T47D and MCF-7 cells were also transiently transfected with a P1CAT reporter plasmid containing c-Myc responsive element and the levels of chloramphenicol acetyltransferase (CAT) activity were observed in response to various treatments. E2 and OHT caused P1CAT induction as seen by increased CAT activity: E2 caused an endogenous increase in the expression of an ICI-sensitive c-Myc form. These data suggest that estrogen upregulates p53 expression while progesterone downregulates this process. Further, E2 regulates p53 level and pRB activity in a coordinated manner.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号