首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   36篇
  2021年   5篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   11篇
  2013年   5篇
  2012年   22篇
  2011年   14篇
  2010年   13篇
  2009年   15篇
  2008年   16篇
  2007年   23篇
  2006年   16篇
  2005年   8篇
  2004年   5篇
  2003年   6篇
  2002年   15篇
  2001年   10篇
  2000年   15篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1961年   1篇
排序方式: 共有246条查询结果,搜索用时 15 毫秒
1.
P1 prophage replication during the Escherichia coli division cycle has been analyzed by using the membrane-elution technique to produce cells labelled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive prophage DNA. P1 prophage replicates during a restricted portion of the bacterial division cycle, like the minichromosome, but at a time during the division cycle different than the time at which the minichromosome replicates in the same cell. A high-copy mini-R6K plasmid present in the same cell replicates throughout the division cycle. Over a wide range of growth rates, the P1 prophage replicates approximately one-half generation after the minichromosome replicates. Thus, the mechanisms underlying P1 replication are similar to those for the F plasmid and the chromosome. Replication occurs when some property related to cell size or cell mass reaches a constant value per origin.  相似文献   
2.

Background

Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening.

Results

Herein, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, and proteogenic and metabolic output analysis.

Conclusions

Taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.
  相似文献   
3.
Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenter Zymomonas mobilis features the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) of Z. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set of hpn transposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial‐derived liposomes showed that hopanoids protect against several ethanol‐driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter‐lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.  相似文献   
4.

Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,β-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3–β11 and β7–α2. From the catalytic Asp located in α3 to a conserved Pro in β11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.

  相似文献   
5.
6.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   
7.
When pT-LYCm4 containing lycopene synthetic genes was co-transformed with pSUcrtY or pSHcrtY containing crtY gene of Pantoea ananatis (P. ananatis) or Pantoea agglomerans (P. agglomerans), beta-carotene productions of 36 and 35 mg/L were obtained, respectively. No lycopene was detected in the beta-carotene production culture. pT-HB, constructed by addition of P. ananatis crtY gene into pT-LYCm4, was used for co-transformation with pSdxs and pSSN12Didi, which increased isopentenyl diphosphate and dimethylallyl diphosphate synthesis. beta-Carotene production significantly increased 1.5-fold (51 mg/L) with the amplification of the dxs gene through pSdxs and 4-fold (135 mg/L) with the mevalonate bottom pathway of pSSN12Didi in the presence of 3.3 mM mevalonate. The pT-DHB, constructed by integrating the dxs gene into pT-HB, was used for cotransformation of Escherichia coli (E. coli) harboring pSSN12Didi, resulting in beta-carotene production of 141 mg/L. Recombinant E. coli harboring pT-DHB and pSSN12Didi was used to maximize beta-carotene production by adjusting the available amounts of glycerol, a carbon source, and mevalonate, the precursor of the mevalonate bottom pathway. When recombinant E. coli was given 16.5 mM mevalonate and 2.5% (w/v) glycerol, beta-carotene production of 503 mg/L in concentration and 49.3 mg/g DCW in content was obtained at 144 h, which was the highest level of carotenoid production in E. coli ever reported in the literature.  相似文献   
8.
A recombinant strain of Salmonella enterica serovar Typhimurium (mutant in propionate-activation activity) was metabolically engineered to control the composition of poly(3-hydroxybutyrate-co-3-hydroxy- valerate) (PHBV), a polyhydroxyalkanoate copolymer with commercially desirable properties. A gene (prpE) encoding propionyl-CoA synthetase was placed under the control of the IPTG-inducible taclacUV5 promoter (P(taclacUV5)) while the polyhydroxyalkanoate synthesis operon (phaBCA) from Acinetobacter sp. RA3849 was coexpressed under the control of the arabinose-inducible araBAD promoter (P(BAD)). S. enterica, harboring both constructs, was grown in medium containing a fixed substrate concentration and the composition of the copolymer was varied between 2 mol% and 25 mol% 3-hydroxyvalerate by controlling the IPTG level in the medium. This "dial-a-composition" system should find application in cases where the substrate concentration of a feedstream for PHBV bioplastic production is not adjustable.  相似文献   
9.
10.
A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号