首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   37篇
  2020年   1篇
  2018年   4篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   6篇
  2010年   13篇
  2009年   12篇
  2008年   14篇
  2007年   14篇
  2006年   11篇
  2005年   18篇
  2004年   12篇
  2003年   10篇
  2002年   16篇
  2001年   18篇
  2000年   17篇
  1999年   10篇
  1998年   2篇
  1997年   5篇
  1996年   9篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
1.
A calcium-sensitive cls4 mutant of Saccharomyces cerevisiae ceased dividing in the presence of 100 mM CaCl2, producing large, round, unbudded cells. Since its DNA replication and nuclear division still continued after interruption of normal budding, the cls4 mutant had a defect in bud formation in Ca2+-rich medium. Its calcium content and calcium uptake activity were the same as those of the wild-type strain, suggesting that the primary defect of the mutation was not in a Ca2+ transport system. Genetic analysis showed that the cls4 mutation did not complement the cdc24-1 mutation, which is known to be a temperature-sensitive mutation affecting bud formation and localized cell surface growth at a restrictive temperature. Moreover, cls4 was tightly linked to cdc24, and a yeast 3.4-kilobase-pair DNA fragment carrying both the CLS4 and CDC24 genes was obtained. These results suggest that the cls4 mutation is allelic to the cdc24 mutation. Thus, Ca2+ ion seems to control bud formation and bud-localized cell surface growth.  相似文献   
2.
The substrate specificities of the amino acid transport systems of vacuoles of the yeast, Saccharomyces cerevisiae, were investigated using purified vacuolar-membrane vesicles (Ohsumi, Y., and Anraku, Y. (1981) J. Biol. Chem. 256, 2079-2082). Ten amino acids: arginine, lysine, histidine, phenylalanine, tryptophan, tyrosine, glutamine, asparagine, isoleucine, and leucine, were taken up actively into the vesicles. Kinetic studies indicated the presence of seven independent H+/amino acid antiport systems with narrow substrate specificity, which were all driven by a proton motive force established by ATP hydrolysis. The Kt and Vmax values, and the specific inhibitors for the arginine, arginine-lysine, histidine, phenylalanine-tryptophan, tyrosine, glutamine-asparagine, and isoleucine-leucine transport systems were determined.  相似文献   
3.
To determine amino acid sequences of the epitopes recognized by monoclonal antibodies (mAbs) 3C8 and 5C3 directed against Yersinia enterocolitica heat-shock protein (HSP60), a dot blot analysis was perfomed using synthesized peptides of Y. enterocolitica HSP60 such as peptides p316-342, p327-359, p340-366, p316-326, p316-321, p319-323, and p321-326 which represent positions of amino acids in Y. enterocolitica HSP60. The dot blot analysis revealed that 5C3 mAb reacted with p316-342, p316-326 and p321-326, and 3C8 mAb p316-342 and p316-326. These results indicate that the epitopes recognized by the mAbs were associated with eleven amino acids, Asp Leu Gly Gln Ala Lys Arg Val Val Ile Asn, of p316-326. The sequence homology between p316-326 of Y. enterocolitica HSP60 and the rest of the HSP60 family suggests that the five amino acids of Lys, Arg, Val, Ile and Asn, which are highly conserved in the HSP60 family, might be related with the epitope recognized by 3C8. In contrast, it was also demonstrated that three amino acids of Leu, Gly and Val, which are not well conserved in the HSP60 family, might be related to the epitope recognized by 5C3.  相似文献   
4.
Spermatozoa from 21 mature minke whales ( Balaenoptera acutorostrata ) taken in the Antarctic Ocean for Japanese research were recovered from vasa deferentia, diluted 1:9 in a Tris-based diluent, and frozen at - 80°C on board the vessel. After a period ranging from 45 to 125 d, the samples were transferred to liquid nitrogen and transported to the laboratory. After thawing at 37°C the motility (percentage of motile spermatozoa), vitality (proportion of live spermatozoa), and sperm concentration were determined for each sample. These values were tested for correlations with morphological measurements (body size, body weight, testis weight) and serum concentrations of progesterone (Pd), estradiol-17β (E2), and testosterone (T). Ten of 21 samples had motile spermatozoa (2%-40%). Although no motile spermatozoa were observed in 1.1 samples, all sperm samples were examined by eosinnigrosin staining and showed vitality levels of 3%44%. It was found that the motility (Y = 0.54) and vitality (r = 0.53) of the spermatozoa were significantly (P < 0.01) correlated with the E2 levels (8.50 ± 1.80 pg/ml). Serum T levels (0.07 ± 0.02 ngml) were significantly correlated with the E2 levels (r = 0.58, P < 0.01>, but sperm concentrations were not correlated with either Ea or T levels. The present study demonstrates that spermatozoa of minke whales can be successfully cryopreserved.  相似文献   
5.
The molecular events associated with decondensation of human sperm nuclei were analyzed by incubating sperm with egg extracts from an amphibian, Bufo japonicus . Acid-urea-Triton polyacrylamide gel electrophoresis (AUT-PAGE) showed that the nuclear basic proteins of human sperm consist mainly of protamines (HPI, HPII) with minor amounts of nucleosomal histones. On incubation of lysolecithin (LC)- and dithiothreitol (DTT)-treated human sperm with the egg extract, the nuclei lost HPI and HPII within 15 min in association with extensive nuclear decondensation, and the acquirement of a whole set of nucleosomal histones. Incubation of LC-DTT-sperm with nucleoplasmin purified from Bufo eggs also induced nuclear decondensation and loss of protamines within 30 min. Native-PAGE and Western blot analyses of incubation medium indicated tight association of the released protamines to nucleoplasmin, strongly suggesting that protamines are removed from sperm nuclei not enzymatically but by their specific binding to nucleoplasmin. On incubation of LC-DTT-sperm with nucleoplasmin and exogenous nucleosomal core histones, micrococcal nuclease-protected DNA fragments were released, although their unit repeat length was slightly less than that of somatic nucleosomes. Thus remodeling of human sperm during fertilization can be mimicked under defined conditions with nucleoplasmin and exogenous histones.  相似文献   
6.
For determination of the physiological role and mechanism of vacuolar proteolysis in the yeast Saccharomyces cerevisiae, mutant cells lacking proteinase A, B, and carboxypeptidase Y were transferred from a nutrient medium to a synthetic medium devoid of various nutrients and morphological changes of their vacuoles were investigated. After incubation for 1 h in nutrient-deficient media, a few spherical bodies appeared in the vacuoles and moved actively by Brownian movement. These bodies gradually increased in number and after 3 h they filled the vacuoles almost completely. During their accumulation, the volume of the vacuolar compartment also increased. Electron microscopic examination showed that these bodies were surrounded by a unit membrane which appeared thinner than any other intracellular membrane. The contents of the bodies were morphologically indistinguishable from the cytosol; these bodies contained cytoplasmic ribosomes, RER, mitochondria, lipid granules and glycogen granules, and the density of the cytoplasmic ribosomes in the bodies was almost the same as that of ribosomes in the cytosol. The diameter of the bodies ranged from 400 to 900 nm. Vacuoles that had accumulated these bodies were prepared by a modification of the method of Ohsumi and Anraku (Ohsumi, Y., and Y. Anraku. 1981. J. Biol. Chem. 256:2079-2082). The isolated vacuoles contained ribosomes and showed latent activity of the cytosolic enzyme glucose-6-phosphate dehydrogenase. These results suggest that these bodies sequestered the cytosol in the vacuoles. We named these spherical bodies "autophagic bodies." Accumulation of autophagic bodies in the vacuoles was induced not only by nitrogen starvation, but also by depletion of nutrients such as carbon and single amino acids that caused cessation of the cell cycle. Genetic analysis revealed that the accumulation of autophagic bodies in the vacuoles was the result of lack of the PRB1 product proteinase B, and disruption of the PRB1 gene confirmed this result. In the presence of PMSF, wild-type cells accumulated autophagic bodies in the vacuoles under nutrient-deficient conditions in the same manner as did multiple protease-deficient mutants or cells with a disrupted PRB1 gene. As the autophagic bodies disappeared rapidly after removal of PMSF from cultures of normal cells, they must be an intermediate in the normal autophagic process. This is the first report that nutrient-deficient conditions induce extensive autophagic degradation of cytosolic components in the vacuoles of yeast cells.  相似文献   
7.
We have purified from a membrane fraction of bovine brain a calmodulin-binding protein (calspectin) that shares a number of properties with erythrocyte spectrin: It has a heterodimeric structure with Mr 240 000 and 235 000 and binds to (dimeric form) or crosslinks (tetrameric form) F-actin. We show that calspectin (tetramer) is capable of inducing the polymerization of G-actin to actin filaments by increasing nucleation under conditions where actin alone polymerizes at a much slower rate. Thus, brain calspectin behaves in the same manner as erythrocyte spectrin, supporting the idea that, in conjunction with actin oligomers it comprises the cytoskeletal meshwork underlying the cytoplasmic surface of the nerve cell.  相似文献   
8.
The properties of Mg2+-ATPase in the vacuole of Saccharomyces cerevisiae were studied, using purified intact vacuoles and right-side-out vacuolar membrane vesicles prepared by the method of Y. Ohsumi and Y. Anraku ((1981) J. Biol. Chem. 256, 2079). The enzyme requires Mg2+ ion but not Ca2+ in. Cu2+ and Zn2+ ions inhibit the activity. The optimal pH is at pH 7.0. The enzyme hydrolyzes ATP, GTP, UTP, and CTP in this order and the Km value for ATP was determined as 0.2 mM. It does not hydrolyze ADP, adenosyl-5'-yl imidodiphosphate, or p-nitrophenyl phosphate. ADP does not inhibit hydrolysis of ATP by the enzyme. The activities of intact vacuoles and of vacuolar membrane vesicles were stimulated 3- and 1.5-fold, respectively, by the protonophore uncoupler 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile and the K+/H+ antiporter ionophore nigericin. Sodium azide at a concentration exerting an uncoupler effect also stimulated the activity. The activity was sensitive to the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to sodium vanadate. The ATP-dependent formation of an electrochemical potential difference of protons, measured by the flow-dialysis method, was determined as 180 mV, with contribution of 1.7 pH units, interior acid, and of a membrane potential of 75 mV. It is concluded that the Mg2+-ATPase of vacuoles is a new marker enzyme for these organelles and is a N,N'-dicyclohexylcarbodiimide-sensitive, H+-translocating ATPase whose catalytic site is exposed to the cytoplasm.  相似文献   
9.
Osmoregulation in Brevibacterium lactofermentum was studied. Proline was accumulated up to approximately 35mg/g dry cell weight in the cells of a wild strain of the bacterium grown under osmotic stress. The osmotic tolerance of a proline auxotroph mutant obtained from the bacterium was lower than that in the wild strain. The activity of pyrroline-5-carboxylate reductase, one of the enzymes in the proline biosynthetic pathway, increased about 3-fold when the cells of B. lactofermentum were grown under osmotic stress. These data indicated that proline is important in osmoregulation in the bacterium.  相似文献   
10.
Atg12 is conjugated to Atg5 through enzymatic reactions similar to ubiquitination. The Atg12–Atg5 conjugate functions as an E3‐like enzyme to promote lipidation of Atg8, whereas lipidated Atg8 has essential roles in both autophagosome formation and selective cargo recognition during autophagy. However, the molecular role of Atg12 modification in these processes has remained elusive. Here, we report the crystal structure of the Atg12–Atg5 conjugate. In addition to the isopeptide linkage, Atg12 forms hydrophobic and hydrophilic interactions with Atg5, thereby fixing its position on Atg5. Structural comparison with unmodified Atg5 and mutational analyses showed that Atg12 modification neither induces a conformational change in Atg5 nor creates a functionally important architecture. Rather, Atg12 functions as a binding module for Atg3, the E2 enzyme for Atg8, thus endowing Atg5 with the ability to interact with Atg3 to facilitate Atg8 lipidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号