首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   8篇
  2020年   1篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   11篇
  2011年   5篇
  2010年   7篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有87条查询结果,搜索用时 279 毫秒
1.
The bacterial flagellum is composed of more than 20 different proteins. The filament, which constitutes the major extracellular part of the flagellum, is built up of approximately 20,000 FliC molecules that assemble at the growing distal end of the filament. A capping structure composed of five FliD molecules located at the tip of the filament promotes polymerization of FliC. Lack of FliD leads to release of the subunits into the growth medium. We show here that FliD can be successfully used in bacterial surface display. We tested various insertion sites in the capping protein, and the optimal region for display was at the variable region in FliD. Deletion and/or insertion at other sites resulted in decreased formation of flagella. We further developed the technique into a multihybrid display system in which three foreign peptides are simultaneously expressed within the same flagellum, i.e., D repeats of FnBPA from Staphylococcus aureus at the tip and fragments of YadA from Yersinia enterocolitica as well as SlpA from Lactobacillus crispatus along the filament. This technology can have biotechnological applications, e.g., in simultaneous delivery of several effector molecules.  相似文献   
2.
Summary Marfan syndrome represents a heterogeneous connective tissue disease, the symptoms arising in several tissues and organs. The defective gene(s) behind this autosomal dominant condition has not been found despite considerable research. The main targets of the research have been the genes coding for connective tissue components. Several of the candidate genes suspected to be defective in Marfan syndrome are located on the long arm of chromosome 2. These genes include a cluster of two genes coding for fibrillar collagens COL3A1 and COL5A2, and a third member of the collagen gene family: COL6A3. Furthermore, genes for elastin (ELN) and fibronectin (FN) are also located in this area of chromosome 2. We studied this chromosomal area using restriction fragment length polymorphism (RFLP) linkage analysis in five Finnish Marfan families with affected members in three generations. In two point linkage analyses, Lod scores of –3.192 ( = 0.1) to COL3A1, –1.683 ( = 0) to COL6A3 and –2.664 ( = 0.01) to FN were obtained, whereas the linkage analysis between elastin and the disease was non-informative (Lod score 0.444, = 0). With the multipoint linkage analysis that permits simultaneous examination of several loci and more efficient use of family data, we obtained an exclusion of all these loci as the site of the mutation leading to Marfan syndrome in these families.  相似文献   
3.
Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production.  相似文献   
4.
In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis.  相似文献   
5.
Immunoaffinity procedure was developed for isolation of low density lipoprotein (LDL) from biological samples by using silica-derived immunoaffinity sorbent. Sorbent was prepared by immobilization of monoclonal anti-apoB-100 antibody onto macroporous silica particles, using carefully optimized binding chemistry. Binding capacity of the sorbent towards LDL was determined by batch extraction experiments with solutions of isolated LDL in phosphate-buffered saline, and found to be 8 mg LDL/g. The bound LDL fraction was readily released from the sorbent by elution with ammonia at pH 11.2. The total time needed for isolation procedure was less than 1 h, with LDL recoveries being essentially quantitative for samples containing less than 0.3 mg LDL/mL. With higher concentrations, recoveries were less favorable, most probably due to irreversible adsorption caused by LDL aggreggation. However, reusability studies with isolated LDL at concentration 0.2 mg/mL indicate that the developed immunoaffinity material may be used for multiple binding-release cycles, with minor losses in binding capacity. Finally, the sorbent was successfully applied to isolation of LDL from diluted plasma. Apart from its practical implications for LDL isolation, this study provides crucial insights into issues associated with LDL-sorbent interactions, and may be useful in future efforts directed to development of lipoprotein isolation approaches.  相似文献   
6.
In atherosclerosis, accumulation of cholesterol in macrophages may partially depend on its defective removal by high-density lipoproteins (HDL). We studied the proteolytic effect of cathepsins F, S, and K on HDL(3) and on lipid-free apoA-I, and its consequence on their function as inductors of cholesterol efflux from cholesterol-filled mouse peritoneal macrophages in vitro. Incubation of HDL(3) with cathepsin F or S, but not with cathepsin K, led to rapid loss of prebeta-HDL, and reduced cholesterol efflux by 50% in only 1min. Cathepsins F or K partially degraded lipid-free apoA-I and reduced its ability to induce cholesterol efflux, whereas cathepsin S totally degraded apoA-I, leading to complete loss of apoA-I cholesterol acceptor function. These results suggest that cathepsin-secreting cells induce rapid depletion of lipid-poor (prebeta-HDL) and lipid-free apoA-I and inhibit cellular cholesterol efflux, so tending to promote the formation and maintenance of foam cells in atherosclerotic lesions.  相似文献   
7.
Many G protein-coupled receptors (GPCRs) are internalized from the plasma membrane after agonist exposure. Previously, marked agonist-induced internalization of human alpha2A- and alpha2B-adrenergic receptors (AR) was observed in transfected neuronal rat pheochromocytoma (PC12) cells; alpha2A- and alpha2B-AR were internalized into partly distinct intracellular vesicles (Olli-L?hdesm?ki et al., J. Neurosci. 19, 9281-9288, 1999). In this paper, the extent of alpha2-AR internalization was quantitated in human embryonic kidney (HEK-293) and PC12 cells by combined application of cell surface biotinylation and ELISA methods, which allow measurement of protein trafficking in intact, differentiated and undifferentiated cells. Significant subtype-specific (but not cell type-dependent) trafficking of human alpha2-AR was observed by quantitation and immunocytochemistry. Agonist-induced sequestration of alpha2B-AR was markedly reduced after blocking the formation of clathrin-coated vesicles by hyperosmotic sucrose pretreatment. The sequestration of alpha2A-AR was partly inhibited after sucrose pretreatment but could be further reduced after inhibiting the formation of both clathrin-coated and caveolin vesicles by combined pretreatment with hyperosmotic sucrose and filipin. Differences were also observed in the recycling of alpha2A- and alpha2B-AR. The extent of maximal agonist-induced sequestration in PC12 cells was not directly dependent on relative agonist efficacy.  相似文献   
8.
The resources available to an individual in any given environment are finite, and variation in life history traits reflect differential allocation of these resources to competing life functions. Nutritional quality of food is of particular importance in these life history decisions. In this study, we tested trade‐offs among growth, immunity and survival in 3 groups of greater wax moth (Galleria mellonella) larvae fed on diets of high and average nutritional quality. We found rapid growth and weak immunity (as measured by encapsulation response) in the larvae of the high‐energy food group. It took longer to develop on food of average nutritional quality. However, encapsulation response was stronger in this group. The larvae grew longer in the low‐energy food group, and had the strongest encapsulation response. We observed the highest survival rates in larvae of the low‐energy food group, while the highest mortality rates were observed in the high‐energy food group. A significant negative correlation between body mass and the strength of encapsulation response was found only in the high‐energy food group revealing significant competition between growth and immunity only at the highest rates of growth. The results of this study help to establish relationships between types of food, its nutritional value and life history traits of G. mellonella larvae.  相似文献   
9.
Phospholipids are key components of biological membranes and their lipolysis with phospholipase A2 (PLA2) enzymes occurs in different cellular pH environments. Since no studies are available on the effect of pH on PLA2-modified phospholipid membranes, we performed 50-ns atomistic molecular dynamics simulations at three different pH conditions (pH 9.0, 7.5, and 5.5) using a fully PLA2-hydrolyzed phosphatidylcholine (PC) bilayer which consists solely of lysophosphatidylcholine and free fatty acid molecules. We found that a decrease in pH results in lateral squeezing of the membrane, i.e. in decreased surface area per headgroup. Thus, at the decreased pH, the lipid hydrocarbon chains had larger SCD order parameter values, and also enhanced membrane thickness, as seen in the electron density profiles across the membrane. From the lateral pressure profiles, we found that the values of spontaneous curvature of the two opposing monolayers became negative when the pH was decreased. At low pH, protonation of the free fatty acid headgroups reduces their mutual repulsion and accounts for the pH dependence of all the above-mentioned properties. The altered structural characteristics may significantly affect the overall surface properties of biomembranes in cellular vesicles, lipid droplets, and plasma lipoproteins, play an important role in membrane fission and fusion, and modify interactions between membrane lipids and the proteins embedded within them.  相似文献   
10.

Background

Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37°C).

Methodology/Principal Findings

To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6°C and 37°C resulted in reconstructions at ∼16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6°C than at 37°C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6°C, but not at 37°C. At 37°C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6°C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles.

Conclusions/Significance

Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号