首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13103篇
  免费   1019篇
  国内免费   6篇
  2021年   150篇
  2020年   118篇
  2019年   124篇
  2018年   187篇
  2017年   164篇
  2016年   252篇
  2015年   449篇
  2014年   538篇
  2013年   634篇
  2012年   867篇
  2011年   790篇
  2010年   537篇
  2009年   492篇
  2008年   679篇
  2007年   745篇
  2006年   648篇
  2005年   624篇
  2004年   576篇
  2003年   602篇
  2002年   564篇
  2001年   143篇
  2000年   103篇
  1999年   156篇
  1998年   190篇
  1997年   119篇
  1996年   100篇
  1995年   141篇
  1994年   129篇
  1993年   127篇
  1992年   122篇
  1991年   107篇
  1990年   108篇
  1989年   88篇
  1988年   112篇
  1987年   96篇
  1986年   81篇
  1985年   109篇
  1984年   103篇
  1983年   93篇
  1982年   112篇
  1981年   100篇
  1980年   107篇
  1979年   89篇
  1978年   97篇
  1977年   75篇
  1976年   76篇
  1975年   61篇
  1974年   78篇
  1969年   60篇
  1968年   53篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
2.
3.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   
4.
Summary Pleiotropic mutants of Serratia marcescens have been isolated. They synthesize greater quantities of the bacteriocin marcescin A and exocellular lipase and exhibit higher rates of spontaneous induction of prophage than does the wild-type strain. These mutants were found to contain more marcescin A plasmid DNA than the parent strain and, furthermore, this increase in plasmid DNA was observed to be proportional to the increase in synthesis of marcescin A. From these results it is proposed that the mutation functions via a gene-dosage effect (at least in the case of bacteriocin synthesis) and causes an elevated synthesis of bacteriocin plasmid DNA.A preliminary report of this work was presented to the 1972 Summer Meeting of the Gesellschaft für Physiologische Chemie held in Bochum, Germany (Timmis and Winkler, 1972).  相似文献   
5.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
6.
Increasing nest survival by excluding predators is a goal of many bird conservation programs. However, new exclosure projects should be carefully evaluated to assess the potential risks of disturbance. We tested the effectiveness of predator exclosure fences (hereafter, fences) for nests of critically endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) at a dry prairie site (Three Lakes; 2015–2018) and a pasture site (the Ranch; 2015–2016) in Osceola County, Florida, USA. We installed fences at nests an average of 8 days after the start of incubation, and nest abandonment after fence installation was rare (2 of 149 installations). Predation was the leading cause of failure for unfenced nests at both sites (48–73%). At Three Lakes, nest cameras revealed that mammals and snakes were responsible for 61.5% and 38.5% of predation events, respectively, at unfenced nests. Fences reduced the daily probability of predation (0.016 for fenced nests vs. 0.074 for unfenced nests). The probability that a fenced nest would survive from discovery to fledging was more than double that of unfenced nests (60.4% vs. 27.7%). However, we found no difference in daily nest survival at the Ranch between the year before nests were fenced (2015; 0.874) and the year when all but one nest were fenced (2016; 0.867) because red imported fire ants (Solenopsis invicta) were responsible for 86% of predation events at fenced nests at the Ranch. The use of cameras at fenced nests revealed that site‐specific differences in nest predators explained variation in fence efficiency between sites. Our fence design may be useful for other species of grassland birds, but site‐specific predator communities and species‐specific response of target bird species to fences should be assessed before installing fences at other sites.  相似文献   
7.
8.
9.
Irreversible chemical programming of monoclonal aldolase antibody (mAb) 38C2 has been accomplished with β-lactam equipped mono- and bifunctional targeting modules, including a cyclic-RGD peptide linked to either the peptide (d-Lys6)-LHRH or another cyclic RGD unit and a small-molecule integrin inhibitor SCS-873 conjugated to (d-Lys6)LHRH. We also prepared monofunctional targeting modules containing either cyclic RGD or (d-Lys6)-LHRH peptides. Binding of the chemically programmed antibodies to integrin receptors α(v)β(3) and α(v)β(5) and to the luteinizing hormone releasing hormone receptor were evaluated. The bifunctional and bivalent c-RGD/LHRH and SCS-783/LHRH, the monofunctional and tetravalent c-RGD/c-RGD, and the monofunctional bivalent c-RGD chemically programmed antibodies bound specifically to the isolated integrin receptor proteins as well as to integrins expressed on human melanoma M-21 cells. c-RGD/LHRH, SCS-783/LHRH, and LHRH chemically programmed antibodies bound specifically to the LHRH receptors expressed on human ovarian cancer cells. This approach provides an efficient, versatile, and economically viable route to high-valency therapeutic antibodies that target defined combinations of specific receptors. Additionally, this approach should be applicable to chemically programmed vaccines.  相似文献   
10.
Pathogenic Neisseria use a variety of mechanisms to survive the bactericidal action of the complement system. Serum resistance is a crucial virulence factor for the development of severe meningococcal disease, meningococcal meningitis and disseminated gonococcal infection. Furthermore, local inflammation at the site of gonococcal infection exposes the bacteria to moderate concentrations of complement factors. We review current concepts of neisserial serum resistance with emphasis on porins and polysaccharides exposed on the neisserial surface and their interaction with components of normal human serum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号