首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1968年   1篇
排序方式: 共有70条查询结果,搜索用时 312 毫秒
1.
2.
Mice lacking both c-Jun-NH(2)-terminal kinases (JNK1 and JNK2) were generated to define their roles in development. Jnk1/jnk2 double mutant fetuses die around embryonic day 11 (E11) and were found to display an open neural tube (exencephaly) at the hindbrain level with reduced apoptosis in the hindbrain neuroepithelium at E9.25. In contrast, a dramatic increase in cell death was observed one day later at E10.5 in both the hindbrain and forebrain regions. Moreover, about 25% of jnk1-/-jnk2+/- fetuses display exencephaly probably due to reduced levels of JNK proteins, whereas jnk1+/-jnk2-/- mice are viable. These results assign both pro- and anti-apoptotic functions for JNK1 and JNK2 in the development of the fetal brain.  相似文献   
3.
4.
Mice deficient for p66shcA represent an animal model to link oxidative stress and aging. p66shcA is implicated in oxidative stress response and mitogenic signaling. Phosphorylation of p66shcA on Ser36 is critical for its function in oxidative stress response. Here we report the identification of ERK as the kinase phosphorylating p66shcA on Ser36. Activation of ERKs was necessary and sufficient for Ser36 phosphorylation. p66shcA interacted with ERK and was demonstrated to be a substrate for ERK, with Ser36 being the major phosphorylation site. Furthermore, in response to H2O2, inhibition of ERK activation repressed p66shcA-dependent phosphorylation of FOXO3a and the down-regulation of its target gene p27kip1. Down-regulation of p27 might promote cell survival, as p27 played a proapoptotic role in oxidative stress response. As a feedback regulation, Ser36 phosphorylated p66shcA attenuated H2O2-induced ERK activation, whereas p52/46shcA facilitated ERK activation, which required tyrosine phosphorylation of CH1 domain. p66shcA formed a complex with p52/46ShcA, which may provide a platform for efficient signal propagation. Taken together, the data suggest there exists an interplay between ERK and ShcA proteins, which modulates the expression of p27 and cell response to oxidative stress.  相似文献   
5.
Stress-activated protein (SAP) kinases and the mitochondrial pro-apoptotic Bcl-2 protein Bak are important regulators of apoptosis. Reduced expression of Bak increases cellular resistance to the anticancer agent cisplatin, and we report here that mouse embryo fibroblasts deficient in the SAP kinase jnk1 are highly resistant to apoptosis induced by cisplatin. When human melanoma cells were treated with cisplatin, Bak function was found to be regulated in two distinct steps by two SAP kinases, MEKK1 and JNK1. The first of these steps involves MEKK1-controlled conformational activation of Bak. The second step leads to formation of 80-170 kDa Bak complexes correlating with apoptosis, and is controlled by JNK1. Inhibition of MEKK1 blocked the initial Bak conformational activation but did not block JNK1 activation, and deficiency in, or inhibition of, JNK1 did not prevent conformational activation of Bak. Furthermore, inducible expression of a constitutively active form of MEKK1 led to Bak conformational activation, but not to 80-170 kDa complexes. Consequently, apoptosis was delayed unless JNK was exogenously stimulated, indicating that Bak conformational activation is not necessarily an apoptotic marker. The two-step regulation of Bak revealed here may be important for tight control of mitochondrial factor release and apoptosis.  相似文献   
6.
7.
8.
9.
Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft‐versus‐host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human‐induced pluripotent stem cells (hiPSCs) has been shown in recent pre‐clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue‐derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC‐derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human‐induced PSC‐derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint‐free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC‐derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render iMSC's effectiveness in translational medicine.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号