首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2746篇
  免费   215篇
  国内免费   65篇
  2023年   12篇
  2022年   22篇
  2021年   61篇
  2020年   30篇
  2019年   54篇
  2018年   44篇
  2017年   49篇
  2016年   73篇
  2015年   101篇
  2014年   111篇
  2013年   193篇
  2012年   165篇
  2011年   155篇
  2010年   106篇
  2009年   96篇
  2008年   125篇
  2007年   146篇
  2006年   135篇
  2005年   117篇
  2004年   113篇
  2003年   106篇
  2002年   86篇
  2001年   84篇
  2000年   80篇
  1999年   68篇
  1998年   23篇
  1997年   29篇
  1996年   21篇
  1995年   20篇
  1994年   20篇
  1993年   25篇
  1992年   53篇
  1991年   53篇
  1990年   42篇
  1989年   51篇
  1988年   46篇
  1987年   31篇
  1986年   25篇
  1985年   27篇
  1984年   32篇
  1983年   17篇
  1982年   16篇
  1981年   18篇
  1980年   10篇
  1979年   16篇
  1978年   18篇
  1977年   22篇
  1976年   12篇
  1974年   14篇
  1973年   14篇
排序方式: 共有3026条查询结果,搜索用时 0 毫秒
1.
The structure of the viral RNA in alfalfa mosaic virus (AlMV) was investigated by means of 31P-nuclear magnetic resonance (NMR). It was found that the 31P-NMR line width of AlMV Top a particles is significantly smaller than that of the larger Bottom particles. At low temperatures, the totational correlation time of the 31P nuclei essentially equals the tumbling rate of the virus particle, indicating that the RNA is contained rigidly inside the virion. At more elevated temperatures, the NMR line width sharpens more than expected on the basis of viscosity changes and the RNA exhibits internal mobility. The occurrence of internal mobility is paralleled by an increased internal mobility of the N-terminal part of the coat protein, as could be observed by 1H-NMR spectroscopy. The influence of EDTA on the 31P-NMR line width appeared to be negligible, which is in agreement with the idea that AlMV does not 'swell' like several other RNA-containing plant viruses.  相似文献   
2.
3.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   
4.
S Kitahata  S Chiba  C F Brewer  E J Hehre 《Biochemistry》1991,30(27):6769-6775
Crystalline (monomeric) soybean and (tetrameric) sweet potato beta-amylase were shown to catalyze the cis hydration of maltal (alpha-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form beta-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D2O by soybean beta-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (VH/VD = 6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-[2(a)-2H]maltose as product. These results indicate (for each beta-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. This is a different stereochemistry than reported for starch hydrolysis. With the hydration catalyzed in H2O and analyzed by gas-liquid chromatography, both sweet potato and soybean beta-amylase were found to convert maltal to the beta-anomer of 2-deoxymaltose. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that beta-amylase protonates maltal from a direction opposite that assumed for protonating starch, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures in dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.  相似文献   
5.
6.
Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology.  相似文献   
7.
8.
The inhibition of yeast (Saccharomyces cerevesiae) metabolism by fungicidal chemicals was investigated. Glucose- or ethanol-dependent yeast respiration was measured with an oxygen electrode, and manometric determination of carbon dioxide release was used to measure fermentation. Both respiration and fermentation were inhibited more by benomyl than by identical molar concentrations of its breakdown product, carbendazim. Butyl isocyanate, another benomyl breakdown product, inhibited respiration more but inhibited fermentation less than the parent compound. Of the isocyanates tested, hexyl isocyanate was the most inhibitory towards both activities. Captan was more active and iprodione less active than benomyl. Because benomyl rapidly broke down to carbendazim when it was prepared in 80% ethanol, only 59% of the dissolved benomyl was intact when it was added to yeast to determine its effect on respiration or fermentation.  相似文献   
9.
H Kanno  I Y Huang  Y W Kan  A Yoshida 《Cell》1989,58(3):595-606
Structural analysis revealed the existence of two types of subunits in human red cell glucose-6-phosphate dehydrogenase. The two subunits have the same COOH region consisting of 479 amino acid residues, but their NH2-terminal regions are different in size and sequence. The minor subunit can be fully encoded by the X-linked G6PD cDNA, but the NH2-terminal region of the major subunit cannot. The cDNA and the gene for the NH2-terminal region of the major subunit were cloned and characterized. Southern blot hybridization indicated that the gene for the NH2-terminal region is on chromosome 6, not on the X chromosome. Northern blot hybridization demonstrated an existence of two separate mRNA components, one for the COOH-terminal region and the other for the NH2-terminal region. Two separate structural genes, the X-linked and chromosome 6-linked genes, must be coresponsible for encoding the single chain subunit. Either cross-translation of two mRNAs, or transpeptidation, or some other mechanism must be involved in the synthesis of human red cell G6PD.  相似文献   
10.
Absorbance changes induced by 25-ps laser flashes were measured in membranes of Heliobacterium chlorum at 15 K. Absorbance difference spectra, measured at various times after the flash showed negative bands in the Qy region at 812, 793 and 665 nm. The first of these bands was attributed to the formation of excited singlet states of a long-wavelength form of antenna bacteriochlorophyll g (BChl g 808). Absorbance changes of shorter wavelength absorbing antenna BChls g were at least an order of magnitude smaller, indicating rapid excitation energy transfer (i.e. within the time resolution of the apparatus) from these BChls to BChl g 808. Excited BChl g 808 showed a bi-exponential decay with time constants of 50 and 200 ps. The bands at 793 and 665 nm may be attributed to the primary charge separation and reflect the photooxidation of the primary electron donor P-798 and photoreduction of a primary electron acceptor absorbing near 670 nm, presumably a BChl c or Chl a-like pigment. The bleaching of this pigment reversed with a time constant of 300 ps at 15 K and of 800 ps at 300 K. This indicates that electron transfer from the primary to the secondary electron acceptor is approximately 2.5 times faster at 15 K than at room temperature.Abbreviations BChl bacteriochlorophyll - FWHM full width at half maximum - P-798 primary electron donor - Tris tris(hydroxymethyl)amino methane  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号