首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   7篇
  国内免费   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   8篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   11篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1984年   1篇
排序方式: 共有55条查询结果,搜索用时 221 毫秒
1.
2.
The recently generated database of microbial genes from an oligotrophic environment populated by a calculated 1800 major phylotypes (the Sargasso Sea metagenome-SSM) presents a great source for expanding local databases of genes indicative of a specific function. In this article we analyse the SSM for the presence of methanopterin-linked C1 transfer genes that are signature for methylotrophy. We conclude that more than 10 phylotypes possessing genes of interest are present in this environment. The sequences representative of these major phylotypes do not appear to belong to any known microbial group capable of methanopterin-linked C1 transfer. Instead, these sequences separate from all known sequences on phylogenetic trees, pointing toward their affiliation with novel microbial phyla. These data imply a broader distribution of methanopterin-linked functions in the microbial world than has been previously known.  相似文献   
3.
In this work we describe development and testing of a novel pair of environmental primers targeting fhcD, a conserved gene in the H4MTP-linked C1-transfer pathway, and demonstrate that these primers enable confident detection of a broad variety of fhcD genes originating from phylogenetically diverse bacteria. The new primer pair was employed to analyse fhcD diversity in Lake Washington sediment, uncovering the presence of 40 fhcD phylotypes. Based on phylogenetic analyses, the phylotypes identified were affiliated with alpha-, beta- and gamma-proteobacteria, and Planctomycetes, while a number of sequences formed deep branches suggesting the presence of unknown groups of microorganisms. To assess the physiological potential and the possible substrate repertoire of the fhcD-containing species in Lake Washington, we conducted enrichments of natural populations on a variety of C1 substrates, and observed specific shifts in community structure in response to different C1 substrates. A specific shift in community structure was also observed in the presence of humic acids suggesting that C1 transfer metabolism linked to H4MPT may be part of the degradation pathway for this natural polymer, possibly involving formaldehyde production. Overall, our data suggest that C1 oxidation reactions linked to H4MPT are much more widespread in natural environments than previously thought.  相似文献   
4.
Novel methylene tetrahydromethanopterin (H4MPT) dehydrogenase enzymes, named MtdC, were purified after expressing in Escherichia coli genes from, respectively, Gemmata sp. strain Wa1-1 and environmental DNA originating from unidentified microbial species. The MtdC enzymes were shown to possess high affinities for methylene-H4MPT and NADP but low affinities for methylene tetrahydrofolate or NAD. The substrate range and the kinetic properties revealed by MtdC enzymes distinguish them from the previously characterized bacterial methylene-H4MPT dehydrogenases, MtdA and MtdB. While revealing higher sequence similarity to MtdA enzymes, MtdC enzymes appear to fulfill a function homologous to the function of MtdB, as part of the H4MPT-linked pathway for formaldehyde oxidation/detoxification.  相似文献   
5.
6.
Methane-utilizing bacteria were enriched from deep igneous rock environments and affiliated by amplification of functional and phylogenetic gene probes. Type I methanotrophs belonging to the genera Methylomonas and Methylobacter dominated in enrichment cultures from depths below 400 m. A pure culture of an obligate methanotroph (strain SR5) was isolated and characterized. Pink-pigmented motile rods of the new isolate contained intracytoplasmic membranes as stacks of vesicles, assimilated methane via the ribulose monophosphate pathway and had an incomplete tricarboxylic acid cycle. Phosphatidyl glycerol, methylene ubiquinone and cytochrome c552 were prevailing. The DNA G+C content is 53.3 mol %. Strain SR5 grew at temperatures between 5 and 30 degrees C with optimum at 15 degrees C, close to its in situ temperature. Analyses of 16S rRNA gene, whole cell protein, enzymatic and physiological analyses of strain SR-5 revealed significant differences compared to the other representatives of Type I methanotrophs. Based on pheno- and genotypic characteristics we propose to refer the strain SR5 as to a new species, Methylomonas scandinavica.  相似文献   
7.
The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing of this genome will help in the understanding of methane cycling in volcanic environments.  相似文献   
8.
Methyloversatilis universalis FAM5 is a facultative methylotrophic bacterium that has been found in a variety of natural and engineered ecosystems. The goal of this study was to investigate M. universalis FAM5 responses to different electron/carbon donors, e.g. methanol or ethanol, during anoxic growth in chemostats with nitrate as the electron acceptor. During steady‐state anoxic growth on either methanol or ethanol, over 90% of the influent nitrate was reduced primarily to nitrite. The cell yield on methanol was lower, possibly due to high energy requirements for C1 assimilation. Label‐free proteomics further revealed that methanol‐grown cells displayed elevated concentrations of the enzymes involved in C1 metabolism (H4MPT/H4F pathways, formate oxidation and serine cycle). In contrast, C2 metabolism (glyoxylate shunt and tri‐carboxylic acid cycle) and polyhydroxy‐β‐butyrate (PHB) synthesis related proteins were overrepresented during subsequent growth on ethanol. Notably, the expression of respiratory nitrate reductase was not affected by the carbon sources applied. Furthermore, the changes in the proteome upon switching back to methanol were mostly reversible. Therefore, M. universalis displays wide‐ranging responses to adapt between growth on methanol and ethanol. Such metabolic versatility could be particularly useful in wastewater treatment systems, which need to switch between different electron donors, while still reliably meeting effluent nitrogen discharge goals.  相似文献   
9.
Some members of Burkholderiales are able to grow on methanol but lack the genes (mxaFI) responsible for the well-characterized two-subunit pyrroloquinoline quinone-dependent quinoprotein methanol dehydrogenase that is widespread in methylotrophic Proteobacteria. Here, we characterized novel, mono-subunit enzymes responsible for methanol oxidation in four strains, Methyloversatilis universalis FAM5, Methylibium petroleiphilum PM1, and unclassified Burkholderiales strains RZ18-153 and FAM1. The enzyme from M. universalis FAM5 was partially purified and subjected to matrix-assisted laser desorption ionization-time of fight peptide mass fingerprinting. The resulting peptide spectrum was used to identify a gene candidate in the genome of M. petroleiphilum PM1 (mdh2) predicted to encode a type I alcohol dehydrogenase related to the characterized methanol dehydrogenase large subunits but at less than 35% amino acid identity. Homologs of mdh2 were amplified from M. universalis FAM5 and strains RZ18-153 and FAM1, and mutants lacking mdh2 were generated in three of the organisms. These mutants lost their ability to grow on methanol and ethanol, demonstrating that mdh2 is responsible for oxidation of both substrates. Our findings have implications for environmental detection of methylotrophy and indicate that this ability is widespread beyond populations possessing mxaF, the gene traditionally used as a genetic marker for environmental detection of methanol-oxidizing capability. Our findings also have implications for understanding the evolution of methanol oxidation, suggesting a convergence toward the enzymatic function for methanol oxidation in MxaF and Mdh2-type proteins.  相似文献   
10.
The ability to detect specific functions of uncultured microbial cells in complex natural communities remains one of the most difficult tasks of environmental microbiology. Here we present respiration response imaging (RRI) as a novel fluorescence microscopy-based approach for the identification of microbial function, such as the ability to use C(1) substrates, at a single-cell level. We demonstrate that RRI could be used for the investigation of heterogeneity of a single microbial population or for functional profiling of microbial cells from complex environmental communities, such as freshwater lake sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号