首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
排序方式: 共有28条查询结果,搜索用时 765 毫秒
1.
Molecular Biology Reports - Stevia rebaudiana produces sweet steviol glycosides that are 300 times sweeter than sugar and have the beneficial effects on human health including anti-hyperglycaemic....  相似文献   
2.
Antlions are insects which feed on ants, insect which dig a pit and lies in wait for ants and other insects. Twelve species of Myrmeleontidae family as antlions and many specimens were identified in different locations in Fars province in Iran. To unveil the genetic similarity between these species, their DNA was extracted by modified CTAB method and with the use of seventeen 10-nucleotides primers of random amplified polymorphic DNA (RAPD); the genetic analysis of them was investigated. After PCR, agarose 1.5?% was used for electrophoresis. The obtained electrophoresis bands had base pairs range between 150 and 1,000?bp. The maximum of polymorphic bands belonged to OPH5, N13, and the minimum of polymorphic bands belonged to OPA7 primers. Different genetic similarity indices were found between eight species of antlions. Possibility of use of RAPD marker together with morphological studies for classification and identification of antlions is discussed.  相似文献   
3.
Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1–3% of the world’s population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.  相似文献   
4.
Autosomal recessive gene defects are arguably the most important, but least studied genetic causes of severe cognitive dysfunction. Homozygosity mapping in 78 consanguineous Iranian families with nonsyndromic autosomal recessive mental retardation (NS-ARMR) has enabled us to determine the chromosomal localization of at least 8 novel gene loci for this condition. Our data suggest that in the Iranian population NS-ARMR is very heterogeneous, and they argue against the existence of frequent gene defects that account for more than a few percent of the cases. Mohammad Mahdi Motazacker and Masoud Garshasbi have contributed equally to this work.  相似文献   
5.
The objective of this work was to evaluate the ability of some physiological traits to identify drought-tolerant bread wheat genotypes. To this end, twenty bread wheat genotypes were assessed under post anthesis drought stress (rain-fed) and irrigated conditions. The Stress Tolerance Index (STI) was used as a measure of drought tolerance. Relationships between STI and Cell Membrane Stability (CMS), Proline Concentration (PC), Relative Water Content (RWC), Chlorophyll a/b Ratio (Chl a/b), Relative Chlorophyll Content (RCC), Excised Leaf Water Retention (ELWR), and Relative Water Loss (RWL) were determined in order to find out whether these physiological traits could be used as the indicators of drought tolerance. The results showed that ELWR, RWL, and CMS could be considered as reliable indicators in screening wheat genotypes for drought tolerance.  相似文献   
6.
Current study was conducted to investigation of effect of magnetic field on cell dedifferentiation and follow it callus induction derived from mature embryo culture in bread wheat genotypes. For this purpose, a factorial experiment based on completely randomized design was carried out with two wheat genotypes and three level of magnetic field strength (0.0, 8.8 and 17.6 Tesla) in three replications. Callus growth rate (CGR), relative growth rate (RGR), callus relative growth rate (CRGR), percentage of callus water content and percentage of callus induction traits were measured. To sum up, the results showed that differences between wheat genotypes and level of magnetic field strength were significant for some studied treats related to callus induction. The effect of magnetic field levels on CGR (from 0.181 to 0.175), RGR (from 1.442 to 0.655) and CRGR (from 0.052 to 0.022) were decreased with increment of magnetic field intensity.  相似文献   
7.
The genetic variants leading to impairment of intellectual performance are highly diverse and are still poorly understood. ST3GAL3 encodes the Golgi enzyme β-galactoside-α2,3-sialyltransferase-III that in humans predominantly forms the sialyl Lewis a epitope on proteins. ST3GAL3 resides on chromosome 1 within the MRT4 locus previously identified to associate with nonsyndromic autosomal recessive intellectual disability. We searched for the disease-causing mutations in the MRT4 family and a second independent consanguineous Iranian family by using a combination of chromosome sorting and next-generation sequencing. Two different missense changes in ST3GAL3 cosegregate with the disease but were absent in more than 1000 control chromosomes. In cellular and biochemical test systems, these mutations were shown to cause ER retention of the Golgi enzyme and drastically impair ST3Gal-III functionality. Our data provide conclusive evidence that glycotopes formed by ST3Gal-III are prerequisite for attaining and/or maintaining higher cognitive functions.  相似文献   
8.
Congenital myasthenic syndromes (CMSs) are a heterogeneous group of genetic disorders affecting neuromuscular transmission. The agrin/muscle-specific kinase (MuSK) pathway is critical for proper development and maintenance of the neuromuscular junction (NMJ). We report here an Iranian patient in whom CMS was diagnosed since he presented with congenital and fluctuating bilateral symmetric ptosis, upward gaze palsy and slowly progressive muscle weakness leading to loss of ambulation. Genetic analysis of the patient revealed a homozygous missense mutation c.2503A>G in the coding sequence of MUSK leading to the p.Met835Val substitution. The mutation was inherited from the two parents who were heterozygous according to the notion of consanguinity. Immunocytochemical and electron microscopy studies of biopsied deltoid muscle showed dramatic changes in pre- and post-synaptic elements of the NMJs. These changes induced a process of denervation/reinnervation in native NMJs and the formation, by an adaptive mechanism, of newly formed and ectopic NMJs. Aberrant axonal outgrowth, decreased nerve terminal ramification and nodal axonal sprouting were also noted. In vivo electroporation of the mutated MuSK in a mouse model showed disorganized NMJs and aberrant axonal growth reproducing a phenotype similar to that observed in the patient’s biopsy specimen. In vitro experiments showed that the mutation alters agrin-dependent acetylcholine receptor aggregation, causes a constitutive activation of MuSK and a decrease in its agrin- and Dok-7-dependent phosphorylation.  相似文献   
9.
Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). This is a key enzyme in the aromatic amino acid biosynthesis pathway of microorganisms and plants. The manipulation of bacterial EPSPS gene in order to reduce its affinity for glyphosate, followed by its transfer to plants is one of the most effective approaches for the production of glyphosate-tolerant plants. In this study, we chose to focus on amino acid residues glycine96 and alanine183 of the E. coli (k12) EPSPS enzyme. These two amino acids are important residues for glyphosate binding. We used site directed mutagenesis (SDM) to induce point mutations in the E. coli EPSPS gene, in order to convert glycine96 to alanine (Gly96Ala) and alanine183 to threonine (Ala183Thr). After confirming the mutation by sequencing, the altered EPSPS gene was transferred to rapeseed (Brassica napus L.) via Agrobacterium-mediated transformation. The transformed explants were screened in shoot induction medium containing 25 mg L−1 kanamycin. Glyphosate tolerance was assayed in putative transgenic plants. Statistical analysis of data showed that there was a significant difference between the transgenic and control plants. It was observed that transgenic plants were resistant to glyphosate at a concentration of 10 mM whereas the non-transformed control plants were unable to survive 1 mM glyphosate. The presence and copy numbers of the transgene were confirmed with PCR and Southern blotting analysis, respectively.  相似文献   
10.
Nonsyndromic mental retardation is one of the most important unresolved problems in genetic health care. Autosomal forms are far more common than X-linked forms, but, in contrast to the latter, they are still largely unexplored. Here, we report a complex mutation in the ionotropic glutamate receptor 6 gene (GRIK2, also called “GLUR6”) that cosegregates with moderate-to-severe nonsyndromic autosomal recessive mental retardation in a large, consanguineous Iranian family. The predicted gene product lacks the first ligand-binding domain, the adjacent transmembrane domain, and the putative pore loop, suggesting a complete loss of function of the GLUK6 protein, which is supported by electrophysiological data. This finding provides the first proof that GLUK6 is indispensable for higher brain functions in humans, and future studies of this and other ionotropic kainate receptors will shed more light on the pathophysiology of mental retardation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号