首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   5篇
  1972年   1篇
  1971年   1篇
  1956年   1篇
  1955年   1篇
  1954年   3篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.
1. Vegetated islands within river corridors are pivotal landscape features and are among the first to disappear as a consequence of flow regulation and channelisation. However, how vegetated islands vary along human‐impacted rivers is poorly understood. 2. We carried out a detailed analysis of the contemporary distribution, diversity and environmental state of vegetated islands within 12 human‐impacted European rivers, using 75 Landsat 7 ETM+ satellite images (1999–2002), historical maps, DEM data and landscape metrics. We tested whether channel fragmentation, catchment land use and the environmental state of fringing floodplains determine the spatial patterns of the islands. We also analysed the historical change of islands within selected sections of the Upper Danube, Upper Rhine and Olt rivers. 3. We identified 2771 islands in the contemporary landscape, varying from 0.06 to 9828 ha. Islands covered up to 21% of the active channel area and contributed up to 32% of the total riparian ecotone length. Island density ranged from 0.06 islands per river‐km (River Sava) to 1.6 islands per river‐km (River Tagliamento). River regulation has led to a marked loss of island density: 94% in the Upper Danube, 93% in the Upper Rhine, and 69% in the Olt. The environmental state of the islands was significantly less altered by human activity than of their fringing floodplains; 93.4% of the vegetated islands exhibited a near‐natural state, while 86% of the fringing floodplains were expansively converted to agricultural and urban land uses. 4. Our results highlight the ubiquitous presence of vegetated islands, their sensitivity to river regulation and their pivotal role for the future restoration and management of river corridors.  相似文献   
3.
1. Global warming has increased the mean surface temperature of the Earth by 0.6 °C in the past century, and temperature is probably to increase by an additional 3 °C by 2100. Water temperature has also increased, which in turn can affect metabolic rate in rivers. Such an increase in metabolic rate could alter the role of river networks in the global C cycle, because the fraction of allochthonous organic C that is respired may increase. 2. Laboratory‐based incubations at increasing water temperature were used to estimate the temperature dependence of benthic respiration in streams. These experiments were performed on stones taken from seven reaches with different thermal conditions (mean temperature ranging 8–19 °C) within the pre‐alpine Thur River network in Switzerland, June–October 2007. 3. The activation energy of respiration in different reaches along the river network (0.53 ± 0.12 eV, n = 94) was similar, indicating that respiration was constrained by the activation energy of the respiratory complex (E = 0.62 eV). Water temperature and the thickness of the benthic biofilm influence the temperature dependence of respiration and our results suggest that an increase of 2.5 °C will increase river respiration by an average of 20 ± 1.6%.  相似文献   
4.
1. River corridors can be visualised as a three‐dimensional mosaic of surface–subsurface exchange patches over multiple spatial scales. Along major flow paths, surface water downwells into the sediment, travels for some distance beneath or along the stream, eventually mixes with ground water, and then returns to the stream. 2. Spatial variations in bed topography and sediment permeability result in a mosaic of patch types (e.g. gravel versus sandy patches) that differ in their hydrological exchange rate with the surface stream. Biogeochemical processes and invertebrate assemblages vary among patch types as a function of the flux of advected channel water that determines the supply of organic matter and terminal electron acceptors. 3. The overall effect of surface–subsurface hydrological exchanges on nutrient cycling and biodiversity in streams not only depends on the proportion of the different patch types, but also on the frequency distribution of patch size and shape. 4. Because nutrients are essentially produced or depleted at the downwelling end of hyporheic flow paths, reach‐scale processing rates of nutrients should be greater in stretches with many small patches (e.g. short compact gravel bars) than in stretches with only a few large patches (e.g. large gravel bars). 5. Based on data from the Rhône River, we predict that a reach with many small bars should offer more hyporheic refugia for epigean fauna than a reach containing only a few large gravel bars because benthic organisms accumulate preferentially in sediments located at the upstream and downwelling edge of bars during floods. However, large bars are more stable and may provide the only refugia during severe flood events. 6. In river floodplain systems exhibiting pronounced expansion/contraction cycles, hyporheic assemblages within newly created patches not only depend on the intrinsic characteristics of these patches but also on their life span, hydrological connection with neighbouring patches, and movement patterns of organisms. 7. Empirical and theoretical evidence illustrate how the spatial arrangement of surface–subsurface exchange patches affects heterogeneity in stream nutrient concentration, surface water temperature, and colonisation of dry reaches by invertebrates. 8. Interactions between fluvial action and geomorphic features, resulting from seasonal and episodic flow pulses, alter surface–subsurface exchange pathways and repeatedly modify the configuration of the mosaic, thereby altering the contribution of the hyporheic zone to nutrient transformation and biodiversity in river corridors.  相似文献   
5.
THE rescue of the genome of transforming RNA viruses from non-productive permissive or non-permissive cells has been achieved by various biological methods, the two basic principles of which are superinfection with leukaemia helper virus1 in the case of permissive cells and mixed culture with homologous cells in the case of non-permissive cells2.  相似文献   
6.
1. Water temperature is a key characteristic of stream ecosystems that is gaining scientific and managerial relevance as maximum temperatures in aquatic ecosystems increase worldwide.
2. To assess the effect of surface–subsurface water exchange on stream water temperature patterns, four alluvial reaches in the Tagliamento River basin (NE Italy), constrained by geomorphic knickpoints at the upper and lower end, and two to four hyporheic flowpaths within each reach, were continuously studied during summer 2007 and winter 2007–08. Water temperature was continuously monitored at the upstream and downstream knickpoints of the floodplains, as well as at discrete upwelling areas within each reach. Discharge and vertical hydraulic gradient were measured along the alluvial reaches, and the residence time and chemistry of upwelling water were assessed four times during the study.
3. Discharge variation along the study reaches revealed that massive hyporheic exchange occurred in all sites, ranging from 21% in reach 2–52% in reach 1. End member mixing analysis showed little influence of ground water, as almost all upwelling water was freshly infiltrated hyporheic water. Importantly, hyporheic exchange flows shaped surface temperature at the upwelling locations in all study reaches, providing potential thermal refugia for aquatic biota. At sites with highest hyporheic flow rates, net temperature change was also reflected at the floodplain scale.
4. The magnitude of the thermal change along a hyporheic flowpath was not related to the flowpath length but to the estimated 222Rn water age. Reduction in the diel thermal amplitude by hyporheic flows rather than net temperature change, reduced temperature extremes. Therefore, restoration activities to create thermal refugia should consider the role of hyporheic flows and enhance the exchange between surface and hyporheic waters.  相似文献   
7.
1. Temporary rivers and streams are among the most common and most hydrologically dynamic freshwater ecosystems. The number of temporary rivers and the severity of flow intermittence may be increasing in regions affected by climatic drying trends or water abstraction. Despite their abundance, temporary rivers have been historically neglected by ecologists. A recent increase in temporary‐river research needs to be supported by new models that generate hypotheses and stimulate further research. In this article, we present three conceptual models that address spatial and temporal patterns in temporary‐river biodiversity and biogeochemistry. 2. Temporary rivers are characterised by the repeated onset and cessation of flow, and by complex hydrological dynamics in the longitudinal dimension. Longitudinal dynamics, such as advancing and retreating wetted fronts, hydrological connections and disconnections, and gradients in flow permanence, influence biotic communities and nutrient and organic matter processing. 3. The first conceptual model concerns connectivity between habitat patches. Variable connectivity suggests that the metacommunity and metapopulation concepts are applicable in temporary rivers. We predict that aggregations of local communities in the isolated water bodies of temporary rivers function as metacommunities. These metacommunities may become longitudinally nested due to interspecific differences in dispersal and mortality. The metapopulation concept applies to some temporary river species, but not all. In stable metapopulations, rates of local extinction are balanced by recolonisation. However, extinction and recolonisation in many temporary‐river species are decoupled by frequent disturbances, and populations of these species are usually expanding or contracting. 4. The second conceptual model predicts that large‐scale biodiversity varies as a function of aquatic and terrestrial patch dynamics and water‐level fluctuations. Habitat mosaics in temporary rivers change in composition and configuration in response to inundation and drying, and these changes elicit a range of biotic responses. In the model, aquatic biodiversity initially increases directly with water level due to increasing abundance of aquatic patches. When most of the channel is inundated and most aquatic patches are connected, further increases in aquatic habitat and connectivity cause aquatic biodiversity to decline due to community homogenisation and reduced habitat diversity. The predicted responses of terrestrial biodiversity to changes in water level are the inverse of aquatic biodiversity responses. 5. The third conceptual model represents temporary rivers as longitudinal, punctuated biogeochemical reactors. Advancing fronts carry water, solutes and particulate organic matter downstream; subsequent flow recessions and drying result in deposition of transported material in reserves such as pools and bar tops. Material processing is rapid during inundated periods and slower during dry periods. The efficiency of material processing is predicted to increase with the number of cycles of transport, deposition and processing that occur down the length of a temporary river. 6. We end with a call for conservation and resource management that addresses the unique properties of temporary rivers. Primary objectives for effective temporary river management are preservation or restoration of aquatic‐terrestrial habitat mosaics, preservation or restoration of natural flow intermittence, and identification of flow requirements for highly valued species and processes.  相似文献   
8.
It is only recently that freshwaters have been identified as important quantitative components of the carbon (C) cycle at global and regional scales. To date there are no studies that quantitatively predict the effects of alterations in temperature and flow regimes, individually, or in concert, on organic C dynamics in streams. To address this need, we applied a mechanistic model to simulate organic C dynamics in Mediterranean river networks under 27 different scenarios of altered temperature and flow regimes. We predict that the organic C dynamics in freshwaters in the Mediterranean, as well as in other semiarid regions, will be highly sensitive to global climate change owing to major increases in the degree of intermittency as well as in flood frequency and magnitude. Results indicate that flow regime alterations increase C export rates, whereas temperature alterations increase instream metabolism of organic C. However, flow regime alterations exhibit a much greater influence on C dynamics than do changes in the temperature regime. Reservoirs partly counteract the effects of flow extremes on C export rates, and their role in the C dynamics increases with increasing flow variability. The present study is one of the first studies to quantify the complex interactions between the flow and the temperature regime on C dynamics, emphasizing the key role of extreme events such as dry periods and floods, compared with overall trend effects. This information is pivotal in understanding the impact of future climate change on global C dynamics.  相似文献   
9.
10.
1. In their natural state, river floodplains are composed of a complex mosaic of contrasting aquatic and terrestrial habitats. These habitats are expected to differ widely in their properties and corresponding ecological processes, although empirical data on their capacity to produce, store and transform organic matter and nutrients are limited. 2. The objectives of this study were (i) to quantify the spatiotemporal variation of respiration, a dominant carbon flux in ecosystems, in a complex river floodplain, (ii) to identify the environmental drivers of respiration within and among floodplain habitat types and (iii) to calculate whole‐floodplain respiration and to put these values into a global ecosystem context. 3. We measured soil and sediment respiration (sum of root and heterotrophic respiration; SR) throughout an annual cycle in two aquatic (pond and channel) and four terrestrial (gravel, large wood, vegetated island and riparian forest) floodplain habitat types in the island‐braided section of the near‐natural Tagliamento River (NE Italy). 4. Floodplain habitat types differed greatly in substratum composition (soil to coarse gravel), organic matter content (0.63 to 4.1% ash‐free dry mass) and temperature (seasonal range per habitat type: 8.6 to 33.1 °C). Average annual SR ranged from 0.54 ± 1.56 (exposed gravel) to 3.94 ± 3.72 μmol CO2 m?2 s?1 (vegetated islands) indicating distinct variation in respiration within and among habitat types. Temperature was the most important predictor of SR. However, the Q10 value ranged from 1.62 (channel habitat) to 4.57 (riparian forest), demonstrating major differences in habitat‐specific temperature sensitivity in SR. 5. Total annual SR in individual floodplain habitats ranged from 160 (ponds) to 1205 g C m?2 (vegetated islands) and spanned almost the entire range of global ecosystem respiration, from deserts to tropical forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号