首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   56篇
  国内免费   2篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   17篇
  2017年   15篇
  2016年   26篇
  2015年   50篇
  2014年   48篇
  2013年   99篇
  2012年   78篇
  2011年   67篇
  2010年   44篇
  2009年   34篇
  2008年   61篇
  2007年   78篇
  2006年   72篇
  2005年   66篇
  2004年   77篇
  2003年   88篇
  2002年   72篇
  2001年   13篇
  2000年   17篇
  1999年   13篇
  1998年   19篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   15篇
  1993年   13篇
  1992年   11篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   13篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1979年   2篇
  1976年   5篇
  1975年   8篇
  1974年   4篇
  1972年   6篇
  1971年   8篇
  1969年   5篇
  1968年   4篇
  1967年   2篇
排序方式: 共有1275条查询结果,搜索用时 421 毫秒
1.
The catalase molecule in germinating pumpkin cotyledons is synthesizedas a precursor (59-kDa) form, whose relative molecular massis larger than the mature enzyme (55-kDa). Although both typesof molecules are localized in the microbodies, the 59-kDa specieshas been shown to be present predominantly in the leaf peroxisomesisolated from green cotyledons, while the 55-kDa species ispredominantly in the glyoxysomes from etiolated cotyledons [Yamaguchiet al. (1984) Proc. Natl. Acad. Sci. USA, 81: 4809]. We examinedthe distribution of the 59- and 55-kDa catalase molecules indark- and light-grown tissues of pumpkin seedlings as well asin other plant species, using the immunoblotting technique.The ratios of the 59- and 55-kDa catalase species differed inthe pumpkin tissues examined. Light interferes with the conversionof the 59-kDa precursor to the 55-kDa form, especially in thecotyledons. The effect of light was less pronounced in the rootsand hypocotyls, indicating that the light regulation of theconversion is tissue-specific. Dark- and light-grown cotyledonsfrom cucumber and watermelon seedlings showed a similar lightregulation, suggesting that cucurbitaceous plants possess similarlight-regulatory mechanism. From the analysis of catalase proteinfrom various plant tissues, a limited correlation between molecularforms of catalase and different microbody populations was observed. (Received September 6, 1986; Accepted December 4, 1986)  相似文献   
2.
The spontaneous release of [3H] gamma-aminobutyric acid ([3H]GABA) in various areas of rat brain injected with [3H]putrescine was examined using a push-pull perfusion technique. The release in a 25-min perfusate was highest in the caudate-putamen. The effect of high K+ stimulation on the release of [3H]GABA formed from [3H]putrescine was examined in the caudate-putamen. The release was enhanced by high K+ solution in a Ca2+-dependent manner.  相似文献   
3.
Substance P (SP)-like immunoreactivity was examined in the lower labial mucosa of the mouse by using the whole-mount technique. The density and design of subepithelial nerve plexuses containing SP differed depending on portions of the lower labial mucosa.  相似文献   
4.
Many eukaryotic proteins are bound to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. Its core backbone, which is conserved in different organisms, is synthesized in the endoplasmic reticulum by the sequential addition of glycan components to phosphatidylinositol. One of the human GPI synthesis genes,PIGF(phosphatidylinositol glycan complementation class F), which is involved late in the synthesis pathway, has been cloned. In this study, we isolated complementary and genomic clones ofPigf,a murine counterpart ofPIGF. Pigfencodes a 219 amino acid protein that complements a class F mutation. ThePigfgene consists of six exons spanning 30 kb and was mapped to chromosome 17 at 17E4–E5. These features are very similar toPIGF,thus demonstrating the interspecies conservation of structure, function, gene organization, and genetic locus between these GPI synthesis genes. The results also extend a region in murine distal chromosome 17 that is syntenic to human chromosome 2p16–p22.  相似文献   
5.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
6.
7.
8.
Chlorophyll (Chl) a', the C132-epimer of Chl a, is a constituent of the primary electron donor (P700) of Photosystem (PS) I of a thermophilic cyanobacterium Synechococcus (Thermosynechococcus) elongatus, as was recently demonstrated by X-ray crystallography. To determine whether PS I of oxygenic photosynthetic organisms universally contains one molecule of Chl a', pigment compositions of thylakoid membranes and PS I complexes isolated from the cyanobacteria T. elongatus and Synechocystis sp. PCC 6803, the green alga Chlamydomonas reinhardtii, and the green plant spinach, were examined by simultaneous detection of phylloquinone (the secondary electron acceptor of PS I) and Chl a' by reversed-phase HPLC. The results were compared with the Chl a/P700 ratio determined spectrophotometrically. The Chl a'/PS I ratios of thylakoid membranes and PS I were about 1 for all the organisms examined, and one Chl a' molecule was found in PS I even after most of the peripheral subunits were removed. Chl a' showed a characteristic extraction behaviour significantly different from the bulk Chl a in acetone/methanol extraction upon varying the mixing ratio. These findings confirm that a single Chl a' molecule in P700 is the universal feature of PS I of the Chl a-based oxygenic photosynthetic organisms.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号