首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   771篇
  免费   72篇
  国内免费   2篇
  2024年   1篇
  2023年   3篇
  2021年   14篇
  2020年   7篇
  2019年   10篇
  2018年   13篇
  2017年   22篇
  2016年   17篇
  2015年   28篇
  2014年   43篇
  2013年   66篇
  2012年   71篇
  2011年   80篇
  2010年   41篇
  2009年   32篇
  2008年   56篇
  2007年   59篇
  2006年   68篇
  2005年   75篇
  2004年   32篇
  2003年   18篇
  2002年   26篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1978年   1篇
  1960年   1篇
排序方式: 共有845条查询结果,搜索用时 15 毫秒
1.
2.
Cytoskeletal filaments of the α-keratin type (cytokeratins) are a characteristic of epithelial cells. In diverse mammals (man, cow and rodents) these cytokeratins consist of a family of approximately 20 polypeptides, which may be divided into the more acidic (I) and the more basic (II) subfamilies. These two subfamilies show only limited amino acid sequence homology. In contrast, nucleic acid hybridization experiments and peptide maps have been interpreted to show that polypeptides of the same subfamily share extended sequence homology.We compare two polypeptides of the acidic cytokeratin subfamily, VIb (Mr 54,000) and VII (Mr 50,000), which are co-expressed in large amounts in bovine epidermal keratinocytes. These two epidermal keratins can be distinguished by specific antibodies and show different patterns of expression among several bovine tissues and cultured cells. In addition, they differ in the stability of their complexes with basic keratin polypeptides and in their tryptic peptide maps. The amino acid sequences deduced from the nucleotide sequences of complementary DNA clones containing the 3′ ends of the messenger RNAs for these keratins are compared with each other and with available amino acid sequences of human, murine and amphibian epidermal keratins. Bovine keratins VIb and VII share considerable sequence homology in the α-helical portion (68% residues identical) but lack significant homology in the extrahelical portion. Bovine keratin VIb shows, in its α-helical region, a pronounced sequence homology (88% identity) to the murine epidermal keratin of Mr 59,000. In addition, the non-helical carboxy-terminal regions of both proteins are glycinerich and contain a canonic sequence GGGSGYGG, which may be repeated several times. Moreover, their mRNAs present a highly conserved stretch of 236 nucleotides containing, in the murine sequence, the end of the coding and all of the non-coding region (81% identical nucleotides). Bovine keratin VII is considerably different from the murine Mr 59,000 keratin but is almost identical to the human cytokeratin number 14 of Mr 50,000, both in the α-helical and in the non-α-helical regions of the proteins, and the mRNAs of the human and the bovine keratins also display a high homology in their 3′ non-coding ends.The results show that in the same species keratins of the same subfamily can differ considerably, whereas equivalent keratin polypeptides of different species are readily identified by characteristic sequence homologies in the α-helical and the non-helical regions as well as in the 3′ non-coding portions of their mRNAs. Among the members of the acidic subfamily I of cytokeratin polypeptides that are co-expressed in bovine epidermis, at least two types can be distinguished by their carboxy-terminal sequences. One type is characterized by its abundance of glycine residues, a consensus GGGSGYGG heptapeptide sequence, which may be repeated several times, and an extended stretch of high RNA sequence homology in the 3′ non-coding part. The other type shows a predominance of serine and valine residues, a subterminal GGGSGYGG sequence (which has been maintained in Xenopus, cow and man) and also a high level of homology in the 3′ non-coding part of the mRNA. The data indicate that individual keratin type specificity overrides species diversity, both at the protein and the mRNA level. We discuss the evolutionary conservation and the tissue distribution of these two types of acidic keratin polypeptides as well as their possible biological functions.  相似文献   
3.
The major phenotypic features of Down syndrome have been correlated with partial trisomies of chromosome 21, allowing us to define the candidate gene region to a 4-Mb segment on the 21q22.2 band. We present here a high-resolution physical map with megabase-sized cosmid/PAC contigs. This ordered clone library has provided unique material for the integration of a variety of mappable objects, including exons, cDNAs, restriction sites, etc. Furthermore, our results have exemplified a strategy for the completion of the chromosome 21 map to sequencing.  相似文献   
4.
The passive membrane properties of the tangential cells in the fly lobula plate (CH, HS, and VS cells, Fig. 1) were determined by combining compartmental modeling and current injection experiments. As a prerequisite, we built a digital base of the cells by 3D-reconstructing individual tangential cells from cobalt-stained material including both CH cells (VCH and DCH cells), all three HS cells (HSN, HSE, and HSS cells) and most members of the VS cell family (Figs. 2, 3). In a first series of experiments, hyperpolarizing and depolarizing currents were injected to determine steady-state I-V curves (Fig. 4). At potentials more negative than resting, a linear relationship holds, whereas at potentials more positive than resting, an outward rectification is observed. Therefore, in all subsequent experiments, when a sinusoidal current of variable frequency was injected, a negative DC current was superimposed to keep the neurons in a hyperpolarized state. The resulting amplitude and phase spectra revealed an average steady-state input resistance of 4 to 5 M and a cut-off frequency between 40 and 80 Hz (Fig. 5). To determine the passive membrane parameters R m (specific membrane resistance), R i (specific internal resistivity), and C m (specific membrane capacitance), the experiments were repeated in computer simulations on compartmental models of the cells (Fig. 6). Good fits between experimental and simulation data were obtained for the following values: R m = 2.5 kcm2, R i = 60 cm, and C m = 1.5 F/cm2 for CH cells; R m = 2.0 kcm2, R i = 40 cm, and C m = 0.9 F/cm2 for HS cells; R m = 2.0 kcm2, R i = 40 cm, and C m = 0.8 F/cm2 for VS cells. An error analysis of the fitting procedure revealed an area of confidence in the R m -R i plane within which the R m -R i value pairs are still compatible with the experimental data given the statistical fluctuations inherent in the experiments (Figs. 7, 8). We also investigated whether there exist characteristic differences between different members of the same cell class and how much the exact placement of the electrode (within ±100 m along the axon) influences the result of the simulation (Fig. 9). The membrane parameters were further examined by injection of a hyperpolarizing current pulse (Fig. 10). The resulting compartmental models (Fig. 11) based on the passive membrane parameters determined in this way form the basis of forthcoming studies on dendritic integration and signal propagation in the fly tangential cells (Haag et al., 1997; Haag and Borst, 1997).  相似文献   
5.
Summary A scalar integrodifferential equation is considered which describes a single self-regulating species. Three results are presented towards showing that the carrying capacity equilibrium state becomes unstable as the self-regulating mechanism acts after a longer time lag.  相似文献   
6.
7.
8.
Current Fungal Infection Reports - This review has incorporated the knowledge and experience of the leads of each of the laboratory working parties of the fungal PCR initiative in order to provide...  相似文献   
9.
Repeated outbreaks due to H3N1 low pathogenicity avian influenza viruses (LPAIV) in Belgium were associated with unusually high mortality in chicken in 2019. Those events caused considerable economic losses and prompted restriction measures normally implemented for eradicating high pathogenicity avian influenza viruses (HPAIV). Initial pathology investigations and infection studies suggested this virus to be able to replicate systemically, being very atypical for H3 LPAIV. Here, we investigate the pathogenesis of this H3N1 virus and propose a mechanism explaining its unusual systemic replication capability. By intravenous and intracerebral inoculation in chicken, we demonstrate systemic spread of this virus, extending to the central nervous system. Endoproteolytic viral hemagglutinin (HA) protein activation by either tissue-restricted serine peptidases or ubiquitous subtilisin-like proteases is the functional hallmark distinguishing (H5 or H7) LPAIV from HPAIV. However, luciferase reporter assays show that HA cleavage in case of the H3N1 strain in contrast to the HPAIV is not processed by intracellular proteases. Yet the H3N1 virus replicates efficiently in cell culture without trypsin, unlike LPAIVs. Moreover, this trypsin-independent virus replication is inhibited by 6-aminohexanoic acid, a plasmin inhibitor. Correspondingly, in silico analysis indicates that plasminogen is recruitable by the viral neuraminidase for proteolytic activation due to the loss of a strongly conserved N-glycosylation site at position 130. This mutation was shown responsible for plasminogen recruitment and neurovirulence of the mouse brain-passaged laboratory strain A/WSN/33 (H1N1). In conclusion, our findings provide good evidence in natural chicken strains for N1 neuraminidase-operated recruitment of plasminogen, enabling systemic replication leading to an unusual high pathogenicity phenotype. Such a gain of function in naturally occurring AIVs representing an established human influenza HA-subtype raises concerns over potential zoonotic threats.  相似文献   
10.
Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species’ unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号