首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   34篇
  2020年   1篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   11篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   9篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   10篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1980年   2篇
  1979年   4篇
  1977年   4篇
  1976年   3篇
  1974年   4篇
  1973年   1篇
  1969年   4篇
  1968年   1篇
  1967年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
1.
We use a recently developed formalism (1) to calculate the salt dependent part of the free energy determining DNA conformational stability in 1:1 electrolytes. The conformations studied are the A, B, C and alternating-B right-handed forms and the ZI, ZII left-handed forms of DNA. In the case of the B-ZI transition of d(G-C).d(G-C) helices in NaCl solution, the free energy contribution considered suffices to describe the transition in a quantitative manner. The theory also predicts the occurrence of salt-induced B-A transitions which have been recently observed with poly[d(n2 A-T)] and poly[d(G-C)]. In other cases, additional terms in the free energy balance, particularly due to hydration effects, must be at least as important as salt effects in determining conformational stability and structural transitions in solution. If diffuse ionic cloud electrostatic effects alone would dominate in all cases, the relative helical stabilities at 0.2 M monovalent salt would decrease in the order C greater than B greater than A greater than ZII greater than ZI greater than alternating-B. At high salt concentrations (2.0 M-5.0 M), the order would be alternating-B greater than ZI greater than A greater than ZII greater than B greater than C.  相似文献   
2.
A F Corin  E Blatt  T M Jovin 《Biochemistry》1987,26(8):2207-2217
The experimental procedures for detecting the triplet states of chromophores in solutions (cuvettes) by fluorescence recovery spectroscopy (FRS) are described in detail, together with applications in studies of protein structure and protein-cell interactions in the microsecond to millisecond time domain. The experimental configuration has been characterized by measuring the emission intensities and anisotropies of eosin and erythrosin immobilized in poly(methyl methacrylate). The fluorescence data are compared with those from phosphorescence emission measurements and with theoretical predictions. Triplet-state lifetimes were obtained in 5 mM phosphate buffer, pH 7.0, of concanavalin A labeled with eosin, tetramethylrhodamine, and fluorescein and of alpha 2-macroglobulin labeled with the first two probes. In the case of labeled concanavalin A, iodide quenching measurements gave bimolecular rate constants of approximately 10(9) M-1 s-1. The usefulness of FRS for studying protein-cell interactions is exemplified with eosin-labeled concanavalin A bound to living A-431 human epidermoid carcinoma cells. Finally, the advantages and disadvantages of the technique are compared to those of the alternative phosphorescence emission method.  相似文献   
3.
Detergent permeabilized Euplotes eurystomus (a fresh water hypotrichous ciliate) was reacted with monoclonal and polyclonal antibodies specific for either detyrosinated or tyrosinated alpha-tubulin (Glu- or Tyr-tubulin). The isolated cytoskeleton-nuclear complex was examined by Western immunoblotting and by immunofluorescent and electron microscopic methods. Both Glu- and Tyr-tubulins were detected by immunoblot analysis. Immunofluorescent microscopy indicated that the alpha-tubulin isotypes are concentrated in different regions of permeabilized cells: Glu-tubulin is located primarily in cirri, membranelles, and surrounding the macro- and micronuclei. Tyr-tubulin is principally at the bases of cirri and membranelles. This differential distribution of alpha-tubulin isotypes is discussed in terms of current concepts concerning the correlation of tubulin post-translational modifications to microtubule stability. Confocal immunofluorescent imaging was of critical importance in clearly differentiating the Glu-tubulin isotype surrounding the macro- and micronuclei from a brilliantly fluorescent environment originating from cytoskeletal structures. In conjunction with conventional and stereo-electron microscopy, confocal optical microscopy provided convincing evidence for a "basket" of microtubules surrounding both nuclei.  相似文献   
4.
5.
A parallel stranded linear DNA duplex incorporating dG.dC base pairs   总被引:3,自引:0,他引:3  
DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA.dT base pairs. We have substituted four dA.dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1.D2) with dG.dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG.dC base pairs (ps-D5.D6) is 10-16 degrees C lower and the van't Hoff enthalpy difference delta HvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-D1.D2. Based on energy minimizations of a ps-[d(T5GA5).d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG.dC base pair in a ps helix.  相似文献   
6.
A F Corin  T M Jovin 《Biochemistry》1986,25(14):3995-4007
The delayed fluorescence properties of proflavin have been exploited in studies of the excited-state binding kinetics of the dye to poly[d(A-T)] and its brominated analogue poly[d(A-br5U)] at room temperature and pH 7. The two analyzed luminescence decay times of the DNA-dye complex are dependent on the total nucleic acid concentration. This dependence is shown to reflect a temporal coupling of the intrinsic delayed emission decay rates with the dynamic chemical kinetic binding processes in the excited state. Temperature-jump kinetic studies conducted on the brominated polymer and corresponding information on poly[d(A-T)] from a previous study [Ramstein, J., Ehrenberg, M., & Rigler, R. (1980) Biochemistry 19, 3938-3948] provide complementary information about the ground state. In the ground state, the poly[d(A-T)]-proflavin complex has one chemical relaxation time, which reaches a plateau at high DNA concentrations. The brominated DNA-dye complex exhibits two relaxation times: a faster relaxation mode that behaves similarly to that for the unhalogenated DNA and a slower relaxation mode that is apparent at high DNA concentrations. The ground-state kinetic data are analyzed in terms of two alternative models incorporating series and parallel reaction schemes. The former consists of two sequential binding steps--a fast bimolecular process followed by a monomolecular step--while the latter consists of two coupled bimolecular steps. A similar analysis for the excited-state data yields reasonable kinetic constants only for the series model, which, in accordance with previous proposals for acridine intercalators, consists of a fast outside binding step followed by intercalation of the dye. A comparison of the ground- and excited-state kinetic parameters reveals that the external binding process is much stronger and the intercalation is much weaker in the excited state. That the excited-state data are only consistent with the series model suggests that delayed luminescence studies may provide a general tool for distinguishing between the two kinetic mechanisms. In particular, we demonstrate the use of delayed luminescence spectroscopy as a tool for probing dynamic DNA-ligand interactions in solution.  相似文献   
7.
Anti-Z-DNA polyclonal and monoclonal immunoglobulins raised against left-handed polynucleotides show various degrees of specificity for base sequence and substitution. Class 1 IgGs recognize all Z-DNA with equal affinity; class 2 IgGs show a preference for d(G-C)n sequences and class 3 IgGs for d(G-C)n sequences with substitutions at the C5 position of the pyrimidine. These antibodies served as probes for the localization of Z-DNA in polytene and metaphase chromosomes and in interphase chromatin by indirect immunofluorescence. A quantitative assessment of the binding of anti-Z-DNA IgGs to polytene chromosomes of Chironomus and Drosophila was made by scanning microphotometry and by computer-assisted image analysis of double immunofluorescence and DNA-specific dye fluorescence images. The three classes of antibodies bind to most of the bands in acid fixed polytene chromosomes of C. thummi; however, preferential binding of one class of antibody over another can be observed in certain regions. These differences can be quantitated by arithmetic division or subtraction of the normalized digital images. If a class 2 antibody is first bound at saturating concentrations the binding of class 1 antibody is reduced throughout most bands by 40-50%. However, the telomeres of the three large chromosomes bind greater than 10 times as much class 1 antibody as class 2 antibody, indicating that the Z-DNA tracts in these regions are comprised largely of alternating sequences containing the A X T basepair, e.g., A-C. High-resolution image analysis of class 1 and class 2 immunofluorescence patterns and the total DNA distribution from polytene chromosomes of D. melanogaster show that the two antibody distributions are very similar in a large majority of the bands, but they often deviate from the mean DNA distribution profile. Z-DNA sequences of both G-C and A-C type are detectable at all levels of ploidy from 2n to 2(13)n and in species as diverse as insects and man. We conclude that the vast majority of polytene chromosome bands (genes) contain one or a few DNA sequences with potential for undergoing the B----Z transition and contain both alternating purine-pyrimidine G-C and A-C tracts or mixed sequences. Highly heterochromatic bands and telomeres have more Z potential sequences than do other bands.  相似文献   
8.
The recent electronmicroscopic and biochemical mapping of Z-DNA sites in phi X174, SV40, pBR322 and PM2 DNAs has been used to determine two sets of criteria for identification of potential Z-DNA sequences in natural DNA genomes. The prediction of potential Z-DNA tracts and corresponding statistical analysis of their occurrence have been made on a sample of 14 DNA genomes. Alternating purine and pyrimidine tracts longer than 5 base pairs in length and their clusters (quasi alternating fragments) in the 14 genomes studied are under-represented compared to the expectation from corresponding random sequences. The fragments [d(G X C)]n and [d(C X G)]n (n greater than or equal to 3) in general do not occur in circular DNA genomes and are under-represented in the linear DNAs of phages lambda and T7, whereas in linear genomes of adenoviruses they are strongly over-represented. With minor exceptions, potential Z-DNA sites are also under-represented compared to random sequences. In the 14 genomes studied, predicted Z-DNA tracts occur in non-coding as well as in protein coding regions. The predicted Z-DNA sites in phi X174, SV40, pBR322 and PM2 correspond well with those mapped experimentally. A complete listing together with a compact graphical representation of alternating purine-pyrimidine fragments and their Z-forming potential are presented.  相似文献   
9.
The rotational diffusion of the complexes of epidermal growth factor (EGF) with its specific receptor on plasma membrane vesicles prepared from human epidermoid carcinoma A431 cells was studied using the time-resolved polarization of phosphorescence of erythrosin-labeled hormone. The measured rotational correlation times of 16-20 microseconds at 4 degrees C are consistent with monomeric freely diffusing EGF receptor. Upon increasing the temperature to 37 degrees C, the rate of rotational diffusion slows down as evidenced by an increase in the correlation time to 75 microseconds. This finding suggests that small clusters of the occupied EGF receptor (microaggregation) form at the higher temperature, a property we have reported previously for occupied receptors on living A431 cells. Subsequent cooling of the membranes leads to a partial reversal of the microaggregation. We conclude that clustering of occupied EGF receptors can proceed at 37 degrees C in the absence of metabolic energy and external interactions, e.g. with components of the cytoskeleton, and thus reflects inherent properties of the receptor protein in its natural environment. A lag phase in the time course of microaggregation observed with the isolated membrane preparations may reflect cooperativity in the process of receptor association.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号