首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1994年   2篇
  1991年   2篇
排序方式: 共有54条查询结果,搜索用时 140 毫秒
1.
The mitochondrial nicotinamide adenine dinucleotide, reduced (NADH) dehydrogenase complex (complex I) of plants has a molecular mass of about 1000 kDa and is composed of more than 40 distinct protein subunits. About three quarter of these subunits are homologous to complex I subunits of heterotrophic eukaryotes, whereas the remaining subunits are unique to plants. Among them are three to five structurally related proteins that resemble an archaebacterial γ-type carbonic anhydrase (γCA). The γCA subunits are attached to the membrane arm of complex I on the matrix-exposed side and form an extra spherical domain. At the same time, they span the inner mitochondrial membrane and are essential for assembly of the protein complex. Expression of the genes encoding γCA subunits is reduced if plants are cultivated in the presence of elevated CO2 concentration. The functional role of these subunits within plant mitochondria is currently unknown but might be related to photorespiration. We propose that the complex I–integrated γCAs are involved in mitochondrial HCO3 formation to allow efficient recycling of inorganic carbon for CO2 fixation in chloroplasts under high light conditions.  相似文献   
2.
Microbial communities in hypersaline underground waters derive from ancient organisms trapped within the evaporitic salt crystals and are part of the poorly known subterranean biosphere. Here, we characterized the viral and prokaryotic assemblages present in the hypersaline springs that dissolve Triassic-Keuper evaporite rocks and feed the Añana Salt Valley (Araba/Alava, Basque Country, Spain). Four underground water samples (around 23% total salinity) with different levels of exposure to the open air were analysed by means of microscopy and metagenomics. Cells and viruses in the spring water had lower concentrations than what are normally found in hypersaline environments and seemed to be mostly inactive. Upon exposure to the open air, there was an increase in activity of both cells and viruses as well as a selection of phylotypes. The underground water was inhabited by a rich community harbouring a diverse set of genes coding for retinal binding proteins. A total of 35 viral contigs from 15 to 104 kb, representing partial or total viral genomes, were assembled and their evolutionary changes through the spring system were followed by SNP analysis and metagenomic island tracking. Overall, both the viral and the prokaryotic assemblages changed quickly upon exposure to the open air conditions.  相似文献   
3.
Reactive oxygen species (ROS) can function as signaling molecules, regulating key aspects of plant development, or as toxic compounds leading to oxidative damage. In this article, we show that the regulation of ROS production during megagametogenesis is largely dependent on MSD1, a mitochondrial Mn-superoxide dismutase. Wild-type mature embryo sacs show ROS exclusively in the central cell, which appears to be the main source of ROS before pollination. Accordingly, MSD1 shows a complementary expression pattern. MSD1 expression is elevated in the egg apparatus at maturity but is downregulated in the central cell. The oiwa mutants are characterized by high levels of ROS detectable in both the central cell and the micropylar cells. Remarkably, egg apparatus cells in oiwa show central cell features, indicating that high levels of ROS result in the expression of central cell characteristic genes. Notably, ROS are detected in synergid cells after pollination. This ROS burst depends on stigma pollination but precedes fertilization, suggesting that embryo sacs sense the imminent arrival of pollen tubes and respond by generating an oxidative environment. Altogether, we show that ROS play a crucial role during female gametogenesis and fertilization. MSD1 activity seems critical for maintaining ROS localization and important for embryo sac patterning.  相似文献   
4.
Previously considered as toxic by-products of aerobic metabolism, reactive oxygen species (ROS) are emerging as essential signaling molecules in eukaryotes. Recent evidence showed that maintenance of ROS homeostasis during female gametophyte development is crucial for embryo sac patterning and fertilization. Although ROS are exclusively detected in the central cell of mature embryo sacs, the study of mutants deficient in ROS homeostasis suggests that controlled oxidative bursts might take place earlier during gametophyte development. Also, a ROS burst that depends on pollination takes place inside the embryo sac. This oxidative response might be required for pollen tube growth arrest and for sperm cell release. In this mini-review, we will focus on new insights into the role of ROS during female gametophyte development and fertilization. Special focus will be made on the mitochondrial Mn-Superoxide dismutase (MSD1), which has been recently reported to be essential for maintaining ROS homeostasis during embryo sac formation.  相似文献   
5.
6.
We report the identification by two hybrid screens of two novel similar proteins, called Arabidopsis thaliana gamma carbonic anhydrase like1 and 2 (AtCAL1 and AtCAL2), that interact specifically with putative Arabidopsis thaliana gamma Carbonic Anhydrase (AtCA) proteins in plant mitochondria. The interaction region that was located in the N-terminal 150 amino acids of mature AtCA and AtCA like proteins represents a new interaction domain. In vitro experiments indicate that these proteins are imported into mitochondria and are associated with mitochondrial complex I as AtCAs. All plant species analyzed contain both AtCA and AtCAL sequences indicating that these genes were conserved throughout plant evolution. Structural modeling of AtCAL sequences show a deviation of functionally important active site residues with respect to CAs but could form active interfaces in the interaction with AtCAs. We postulate a CA complex tightly associated to plant mitochondrial complex.  相似文献   
7.

Background

The iridocorneal angle forms in the mammalian eye from undifferentiated mesenchyme between the root of the iris and cornea. A major component is the trabecular meshwork, consisting of extracellular matrix organized into a network of beams, covered in trabecular endothelial cells. Between the beams, channels lead to Schlemm's canal for the drainage of aqueous humor from the eye into the blood stream. Abnormal development of the iridocorneal angle that interferes with ocular fluid drainage can lead to glaucoma in humans. Little is known about the precise mechanisms underlying angle development. There are two main hypotheses. The first proposes that morphogenesis involves mainly cell differentiation, matrix deposition and assembly of the originally continuous mesenchymal mass into beams, channels and Schlemm's canal. The second, based primarily on rat studies, proposes that cell death and macrophages play an important role in forming channels and beams. Mice provide a potentially useful model to understand the origin and development of angle structures and how defective development leads to glaucoma. Few studies have assessed the normal structure and development of the mouse angle. We used light and electron microscopy and a cell death assay to define the sequence of events underlying formation of the angle structures in mice.

Results

The mouse angle structures and developmental sequence are similar to those in humans. Cell death was not detectable during the period of trabecular channel and beam formation.

Conclusions

These results support morphogenic mechanisms involving organization of cellular and extracellular matrix components without cell death or atrophy.  相似文献   
8.
Frataxin, a nuclear-encoded mitochondrial protein, has been proposed to participate in Fe-S cluster assembly, mitochondrial energy metabolism, respiration, and iron homeostasis. However, its precise function remains elusive. Frataxin is highly conserved in living organisms with no major structural changes, in particular at the C-terminal protein domain, suggesting that it plays a key function in all organisms. Recently, a plant gene, AtFH, with significant homology to other members of the frataxin family has been described. To gain insight on the frataxin role in plants, the frataxin domain was expressed in Escherichia coli BL21-codonPlus (DE3)-RIL cells and purified using a Ni-chelating column. The purified protein, added to a mixture containing Fe(II) and H2O2, attenuates the Fenton reaction indicating that the recombinant plant frataxin is functional. The procedure described here produced high yield of 99% pure protein through only one chromatographic step, suitable for further structure-function studies.  相似文献   
9.
Gamma carbonic anhydrases in plant mitochondria   总被引:1,自引:0,他引:1  
Plant mitochondria contain non-phosphorylating bypasses of the respiratory chain, catalysed by the alternative oxidase (AOX) and alternative NADH dehydrogenases (NDH), as well as uncoupling (UCP) protein. Each of these components either circumvents or short-circuits proton translocation pathways, and each is encoded by a small gene family in Arabidopsis. Whole genome microarray experiments were performed with suspension cell cultures to examine the effects of various 3 h treatments designed to induce abiotic stress. The expression of over 60 genes encoding components of the classical, phosphorylating respiratory chain and tricarboxylic acid cycle remained largely constant when cells were subjected to a broad range of abiotic stresses, but expression of the alternative components responded differentially to the various treatments. In detailed time-course quantitative PCR analysis, specific members of both AOX and NDH gene families displayed coordinated responses to treatments. In particular, the co-expression of AOX1a and NDB2 observed under a number of treatments suggested co-regulation that may be directed by common sequence elements arranged hierarchically in the upstream promoter regions of these genes. A series of treatment sets were identified, representing the response of specific AOX and NDH genes to mitochondrial inhibition, plastid inhibition and abiotic stresses. These treatment sets emphasise the multiplicity of pathways affecting alternative electron transport components in plants.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s11103-005-5514-7  相似文献   
10.
Neutrophil elastase and cathepsin G are abundant intracellular neutrophil proteinases that have an important role in destroying ingested particles. However, when neutrophils degranulate, these proteinases are released and can cause irreparable damage by degrading host connective tissue proteins. Despite abundant endogenous inhibitors, these proteinases are protected from inhibition because of their ability to bind to anionic surfaces. Plasminogen activator inhibitor type-1 (PAI-1), which is not an inhibitor of these proteinases, possesses properties that could make it an effective inhibitor of neutrophil proteinases if its specificity could be redirected. PAI-1 efficiently inhibits surface-sequestered proteinases, and it efficiently mediates rapid cellular clearance of PAI-1-proteinase complexes. Therefore, we examined whether PAI-1 could be engineered to inhibit and clear neutrophil elastase and cathepsin G. By introducing specific mutations in the reactive center loop of wild-type PAI-1, we generated PAI-1 mutants that are effective inhibitors of both proteinases. Kinetic analysis shows that the inhibition of neutrophil proteinases by these PAI-1 mutants is not affected by the sequestration of neutrophil elastase and cathepsin G onto surfaces. In addition, complexes of these proteinases and PAI-1 mutants are endocytosed and degraded by lung epithelial cells more efficiently than either the neutrophil proteinases alone or in complex with their physiological inhibitors, alpha1-proteinase inhibitor and alpha1-antichymotrypsin. Finally, the PAI-1 mutants were more effective in reducing the neutrophil elastase and cathepsin G activities in an in vivo model of lung inflammation than were their physiological inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号