首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   12篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   15篇
  2013年   11篇
  2012年   17篇
  2011年   15篇
  2010年   9篇
  2009年   13篇
  2008年   8篇
  2007年   9篇
  2006年   3篇
  2005年   7篇
  2004年   10篇
  2003年   8篇
  2002年   13篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1988年   3篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1967年   1篇
排序方式: 共有204条查询结果,搜索用时 547 毫秒
1.
Scaling analysis of coral reef systems: an approach to problems of scale   总被引:1,自引:0,他引:1  
Dimensional analysis and scaling are related, semi-formal procedures for capturing the essential process(es) controlling the behaviour of a complex system, and for describing the functional relationships between them. The techniques involve the parameterization of natural processes, the identification of the temporal and spatial scales of variation of processes, and the evaluation of potential interactions between processes referenced to those scales using non-dimensional (scaled) parameters. Scaling approaches are increasingly being applied to a broad range of marine ecological problems, with the aims of assessing the relative importance of physical and biological parameters in controlling variation in process rates, and placing limits on the ability of one process to affect another. The value of the approach to coral reef research lies in the conceptualization of relationships between discipline-specific processes, and the evaluation of scale-dependent processes across the large range of spatial and temporal scales which pertain to coral reefs. Characteristic scales of physical, geological and biological processes exhibit different patterns of distribution along the temporal dimension. Scaling arguments based on examples from reef systems indicate that a large group of biological and biogeochemical processes are strongly influenced by hydrodynamic processe occuring at similar time scales within the range from about on hour to one year. We argue that scaling approaches to process-related problems are pre-requisite to interdisciplinary research on coral reefs.  相似文献   
2.
This study was designed to explore the question of whether the population of morphologically similar smooth muscle cells (SMC) in the vessel wall is functionally homogeneous or heterogeneous with respect to their proliferative response to injury. Using time-lapse video recording we measured interdivision times (IDT) of primary SMC clones, sibling pairs, and mother/daughter pairs. SMC from in vivo undisturbed vessels displayed an interclonal and intraclonal heterogeneity with a wide range in IDT. In vivo balloon injury resulted in a population with homogeneously short IDT. While 80% of IDT of SMC from injured vessels were shorter than 14 h, only slightly more than half of IDT of cells from undisturbed vessels fell into this category. Longitudinal analysis of mother/daughter pairs confirmed the presence of a heterogeneous population of SMC in the undisturbed vessel wall. In vivo balloon injury not only shortened the IDT of the majority of cells, but the shorter IDT persisted much longer than in the case of the undisturbed vessel. We suggest that a morphologically homogeneous SMC population in the aorta can now be subdivided into several groups of functionally different SMC with respect to their proliferative response to injury.  相似文献   
3.
The affinity of amino acid residues to nucleic acids is probed by measurements of melting temperatures tm for the helix–coil transition at various concentrations of amino acid amides. The increase of tm on addition of ligand is described by the equation tm = t*m + αlog(1+Ktcλ), where t*m is the melting temperature in the absence of ligand, cλ the ligand concentration, and Kt the “tm-onset” constant, which is analogous to an equilibrium constant. It is shown that Kt is closely related to the affinity of the ligands to the double helix, whereas the slope α mainly reflects the preference of the ligand binding to the helix versus the coil form. In the case of the amino acid amides, α is found to be virtually independent of the nature of the side chain with few exceptions, e. g., aromatic amides. The tm-onset constant, however, strongly depends on the nature of the amino acid side chain. For simple aliphatic amino acids, the relative free energy of binding decreases with increasing hydrophobic free energy, e.g., a high affinity is found for Gly-amide and a low affinity for Leu-amide. This relation is modified by functional groups like OH in Ser-amide. The helices poly[d(A-T)], ploy[d(I-C)]. and poly[d(A-C)]·poly[d(G-T)] exhibit similar affinity scales with relatively small variations. Our results demonstrate that the hydrophilic character of double helices at their surface disfavors binding of hydrophobic ligands unless special contacts can be formed. From our results we establish an affinity scale for the binding of amino acids to double helices.  相似文献   
4.
A comparative study was made of the heat resistance of spores of putrefactive anaerobe 3679 grown in two different sporulation media and of the recovery pattern of these spores in several subculturing media after treatment with moist and dry heat. The heat resistance of the spores was characterized in the form of D and z values. The D values were determined by the modified Schmidt method. The z values were established by the graphic method. The results revealed significant differences in D and z values, depending on the type of heat and sporulation and subculture media. Spores grown in beef heart infusion showed higher heat resistance than those grown in Trypticase. Among the seven subculture media used, the largest number of spores was recovered in beef infusion. The magnitude of the D values at 121.1 C obtained with spores heated in moist heat decreased, depending on the subculture medium used, in the following order: beef infusion, pea infusion, yeast extract, liver infusion, Eugonbroth, Trypticase, synthetic medium. With spores subjected to dry heat, D values at 148.9 C decreased with the subculture medium in the following order: beef infusion, yeast extract, pea infusion and liver infusion, Trypticase, Eugonbroth, synthetic medium. The z values obtained with spores subjected to dry heat were approximately double those obtained with moist heat. Their relative magnitude varied slightly, depending on the type of subculture medium used. However, the relative magnitudes of the D values and z values with reference to the subculture media used were different with moist heat from those obtained with dry heat. Two theories are discussed as possible explanations for the logarithmic order of death of bacterial spores. The results obtained in these experiments, together with the findings of other workers, are most compatible with the theory that heat treatment of spores results in an increased rate of random injury to the genetic material of the spores.  相似文献   
5.
We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies.  相似文献   
6.
7.
T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4–6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses.  相似文献   
8.
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF''s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF''s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD.Glial cell line-derived neurotrophic factor (GDNF) is the founding member of the four ligands in the GDNF family, which belong to the transforming growth factor-β superfamily.1 GDNF was characterized as a potent survival factor for many neurons in culture such as dopaminergic, motor, sympathetic, parasympathetic, sensory and enteric neurons.1, 2 In addition, in dopaminergic neuron cultures GDNF stimulates neuronal differentiation, neurite outgrowth, synapse formation and dopamine release.1, 2As degeneration of midbrain dopaminergic neurons in the substantia nigra pars compacta (SNpc) represents a major hallmark of Parkinson disease (PD), the most common neurodegenerative movement disorder, GDNF has raised considerable interest as a therapeutic molecule for the treatment of PD.3, 4, 5 PD affects >2% of individuals over the age of 60 years, but no curative treatment is available to date, mainly due to a lack of understanding disease etiology.6, 7, 8 Preclinical studies in the established 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) rodent and primate models of PD demonstrated a substantial neuroprotection and regeneration effect by striatal provided GDNF or its close relative neurturin.3, 4, 9 However, clinical phase II trials on PD patients using GDNF or neurturin did so far not convincingly recapitulate their beneficial effects on the dopaminergic system in humans most likely due to technical problems and the selection of advanced PD patients.10, 11, 12, 13GDNF signaling is highly complex as this neurotrophic factor can bind to a variety of receptors, thus being able to induce pleiotropic effects. GDNF efficiently binds to the GPI-linked GDNF family receptor α1 (GFRα1).1, 2 It has been shown that the GDNF/GFRα1 complex can activate not only the canonical GDNF receptor Ret, a receptor tyrosine kinase which signals through the sarcoma protein (Src)/rat sarcoma (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, NF-κB (nuclear factor ''kappa-light-chain-enhancer'' of activated B cells), JNK (c-Jun N-terminal kinases) and PLCγ (phospholipase γ) pathway, but also with other signaling inducing receptors.1, 2, 4, 5, 13 So far, at least four alternative GDNF receptors have been described which are all expressed in midbrain dopaminergic neurons, NCAM,14, 15 the integrins αV and βI,14, 16 syndecan 317 and N-cadherin.18 Interestingly, Ret is not essential during pre- and postnatal development of the mouse dopaminergic system,19, 20, 21, 22, 23 but specifically required for the maintenance of SNpc dopaminergic neurons and their striatal innervation in aged mice.23, 24, 25 In contrast, GDNF seems most likely under physiological conditions to be dispensable during development and maintenance of midbrain dopaminergic neurons in mice, although conflicting results exist.26, 27, 28 Thus, Ret might be activated by a GDNF-independent mechanism to stimulate SNpc dopaminergic neuron survival. In addition, the in vivo function of the alternative GDNF receptors in the dopaminergic system under physiological and pathophysiological conditions, like PD, and their dependence on GDNF has not yet been addressed in detail. This raised the important question which GDNF receptor might be required to mediate GDNF''s reported neuroprotective and regenerative effect in the dopaminergic system in PD animal models and potentially in PD patients.5, 29Previously, we showed in dopaminergic neuron-specific Ret knockout mice that Ret receptor loss does not result in a higher vulnerability of midbrain dopaminergic neurons against MPTP but to less resprouting of left over dopaminergic neuron axons in the striatum after MPTP intoxication.30 In adult mice endogenous GDNF levels are rather low.26, 31 Therefore, we could not rule out in that study the possibility, that higher levels of GDNF—as also used in the clinical GDNF trials in PD patients—might have neuroprotective and regenerating effects even in the absence of the Ret receptor. Here we addressed now this question by viral overexpression of GDNF in MPTP-treated mice lacking expression of Ret again specifically in dopaminergic neurons.23, 30 We found that in the absence of Ret in dopaminergic neurons even a substantial overexpression of GDNF in the striatum does not have a neuroprotective and regenerative effect. Thus, despite the expression of alternative GDNF receptors on midbrain dopaminergic neurons, the presence of the canonical GDNF receptor Ret seems to be mandatory for mediating GDNF''s beneficial survival and axonal resprouting effect in these neurons.  相似文献   
9.
The organic anion transporter SLC21A6 (also known as OATP2, OATP-C, or LST-1) is involved in the hepatocellular uptake of a variety of endogenous and xenobiotic substances and drugs. We analyzed 81 human liver samples by immunoblotting and found one with a strongly reduced amount of SLC21A6 protein suggesting mutations in the SLC21A6 gene. The SLC21A6 cDNA from this sample contained five base pair changes in one allele; three of the mutations resulted in amino acid substitutions designated SLC21A6-N130D, SLC21A6-P155T, and SLC21A6-L193R. The former two were polymorphisms (SLC21A6*1b and SLC21A6*4), whereas SLC21A6-L193R represents the first naturally occurring mutation identified in one allele of the SLC21A6 gene, which affects protein maturation and organic anion transport. We introduced each of the mutations into the SLC21A6 cDNA and established stably transfected MDCKII cells expressing the respective mutant SLC21A6 protein. Immunofluorescence microscopy and uptake measurements were used to study localization and transport properties of the mutated proteins. Both proteins carrying the polymorphisms were sorted to the lateral membrane like wild-type SLC21A6, but their transport properties for the substrates cholyltaurine and 17beta-glucuronosyl estradiol were altered. Importantly, most of the mutant protein SLC21A6-L193R was retained intracellularly, and this single amino acid exchange abolished transport function.  相似文献   
10.
BAG-1 is a ubiquitin domain protein that links the molecular chaperones Hsc70 and Hsp70 to the proteasome. During proteasomal sorting BAG-1 can cooperate with another co-chaperone, the carboxyl terminus of Hsc70-interacting protein CHIP. CHIP was recently identified as a Hsp70- and Hsp90-associated ubiquitin ligase that labels chaperone-presented proteins with the degradation marker ubiquitin. Here we show that BAG-1 itself is a substrate of the CHIP ubiquitin ligase in vitro and in vivo. CHIP mediates attachment of ubiquitin moieties to BAG-1 in conjunction with ubiquitin-conjugating enzymes of the Ubc4/5 family. Ubiquitylation of BAG-1 is strongly stimulated when a ternary Hsp70.BAG-1.CHIP complex is formed. Complex formation results in the attachment of an atypical polyubiquitin chain to BAG-1, in which the individual ubiquitin moieties are linked through lysine 11. The noncanonical polyubiquitin chain does not induce the degradation of BAG-1, but it stimulates a degradation-independent association of the co-chaperone with the proteasome. Remarkably, this stimulating activity depends on the simultaneous presentation of the integrated ubiquitin-like domain of BAG-1. Our data thus reveal a cooperative recognition of sorting signals at the proteolytic complex. Attachment of polyubiquitin chains to delivery factors may represent a novel mechanism to regulate protein sorting to the proteasome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号