首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   2篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   12篇
  2013年   10篇
  2012年   23篇
  2011年   19篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1968年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
1.
Spray-induced gene silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea. AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B. cinerea. Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi-mediated protection against B. cinerea both on pre- and post-harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection.  相似文献   
2.
Despite the clear importance of language in our life, our vital ability to quickly and effectively learn new words and meanings is neurobiologically poorly understood. Conventional knowledge maintains that language learning—especially in adulthood—is slow and laborious. Furthermore, its structural basis remains unclear. Even though behavioural manifestations of learning are evident near instantly, previous neuroimaging work across a range of semantic categories has largely studied neural changes associated with months or years of practice. Here, we address rapid neuroanatomical plasticity accompanying new lexicon acquisition, specifically focussing on the learning of action-related language, which has been linked to the brain’s motor systems. Our results show that it is possible to measure and to externally modulate (using transcranial magnetic stimulation (TMS) of motor cortex) cortical microanatomic reorganisation after mere minutes of new word learning. Learning-induced microstructural changes, as measured by diffusion kurtosis imaging (DKI) and machine learning-based analysis, were evident in prefrontal, temporal, and parietal neocortical sites, likely reflecting integrative lexico-semantic processing and formation of new memory circuits immediately during the learning tasks. These results suggest a structural basis for the rapid neocortical word encoding mechanism and reveal the causally interactive relationship of modal and associative brain regions in supporting learning and word acquisition.

This combined neuroimaging and brain stimulation study reveals rapid and distributed microstructural plasticity after a single immersive language learning session, demonstrating the causal relevance of the motor cortex in encoding the meaning of novel action words.  相似文献   
3.

The anthropogenic movement of species has favoured the introduction of invasive plants worldwide. Invasive plants are frequently released from their natural enemies; however, new associations with generalist herbivores may induce defence mechanisms of non-native plants. Defensive traits are often directly related to the highly competitive ability, but also to potential antagonisms and mutualisms that they can establish with soil microorganisms. Here, we examined whether the intraspecific competition and soil microorganisms influence the morphological and physiological traits of Carpobrotus edulis when is being attacked by the native generalist snail Theba pisana. To achieve this, we grew two C. edulis individuals in separate and same pots filled with live or sterile sand, and with or without T. pisana. Our results indicated that herbivory induced an increase of shoot biomass in attacked C. edulis individuals (i.e., treated donor plants), as well as in un-attacked neighbouring individuals co-growing in the same pot (i.e., untreated recipient plants). Nevertheless, intraspecific competition nor soil microorganisms did not affect the growth of C. edulis despite reduced physiological activity and damage caused by the herbivore. Overall, our findings revealed that C. edulis individuals tolerate snail attack by inducing a compensatory growth response. We conclude that phenotypic plasticity of invasive C. edulis favours tolerance against herbivores, but we also suggest that plant-plant interactions probably determine the plant growth of un-attacked neighbouring C. edulis individuals, thus favouring their invasion mechanisms.

  相似文献   
4.
5.
Physical activity and fitness play a significant role in prevention of overweight and obesity in children and adolescentes. Current understanding and evidence from epidemiologic studies provide useful insights to better understand how they relate to each other and how to develop future intervention strategies. This paper summarizes the most relevant information from cross-sectional and longitudinal studies on the relationships between physical activity, physical fitness, and overweight in early life. According to current scientific evidence: (i) High levels of physical activity during childhood and adolescence, particularly vigorous physical activity, are associated to lower total and central adiposity at this age and later in life; (ii) the level of physical fitness, especially aerobic fitness, is inversely related to current and future adiposity levels; (iii) overweight children and adolescents with a high fitness level have a healthier cardiovascular profile than their overweight, low fit peers and a similar profile to their normal weight, low fit peers. This suggests that high fitness levels may counteract the negative consequences attributed to body fat. These findings suggest that increasing physical fitness in overweight children and adolescentes may have many positive effects on health, including lower body fat levels.  相似文献   
6.
7.

Objective

To evaluate siMS score and siMS risk score, novel continuous metabolic syndrome scores as methods for quantification of metabolic status and risk.

Materials and Methods

Developed siMS score was calculated using formula: siMS score = 2*Waist/Height + Gly/5.6 + Tg/1.7 + TAsystolic/130—HDL/1.02 or 1.28 (for male or female subjects, respectively). siMS risk score was calculated using formula: siMS risk score = siMS score * age/45 or 50 (for male or female subjects, respectively) * family history of cardio/cerebro-vascular events (event = 1.2, no event = 1). A sample of 528 obese and non-obese participants was used to validate siMS score and siMS risk score. Scores calculated as sum of z-scores (each component of metabolic syndrome regressed with age and gender) and sum of scores derived from principal component analysis (PCA) were used for evaluation of siMS score. Variants were made by replacing glucose with HOMA in calculations. Framingham score was used for evaluation of siMS risk score.

Results

Correlation between siMS score with sum of z-scores and weighted sum of factors of PCA was high (r = 0.866 and r = 0.822, respectively). Correlation between siMS risk score and log transformed Framingham score was medium to high for age groups 18+,30+ and 35+ (0.835, 0.707 and 0.667, respectively).

Conclusions

siMS score and siMS risk score showed high correlation with more complex scores. Demonstrated accuracy together with superior simplicity and the ability to evaluate and follow-up individual patients makes siMS and siMS risk scores very convenient for use in clinical practice and research as well.  相似文献   
8.
9.
Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号