首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   662篇
  免费   26篇
  2023年   3篇
  2022年   3篇
  2021年   13篇
  2020年   15篇
  2019年   12篇
  2018年   12篇
  2017年   7篇
  2016年   21篇
  2015年   24篇
  2014年   31篇
  2013年   56篇
  2012年   61篇
  2011年   50篇
  2010年   24篇
  2009年   27篇
  2008年   37篇
  2007年   35篇
  2006年   35篇
  2005年   35篇
  2004年   37篇
  2003年   25篇
  2002年   28篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1988年   5篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1973年   2篇
  1972年   3篇
  1970年   6篇
  1969年   4篇
  1968年   4篇
  1967年   1篇
  1966年   2篇
  1965年   3篇
排序方式: 共有688条查询结果,搜索用时 609 毫秒
1.
Cholera toxin (CT) stimulated phospholipase activity and caused [3H]arachidonic acid (3H-AA) release in a murine macrophage/monocyte cell line. Pretreatment of cells with dexamethasone, a phospholipase A2 (PLA2) inhibitor, did not affect CT-induced 3H-AA release. In contrast, aspirin, which is an inhibitor of phospholipase C (PLC), blocked CT-induced 3H-AA release and subsequent prostaglandin (PC) synthesis. The inhibitory effect of aspirin was dose dependent, with 4 mM reducing the CT response by approximately 50%. Similarly, inhibition was time dependent, occurring when the drug was added to the culture medium as late as 30 min after CT. Brief exposure (30 min) of the cells to aspirin did not alter their subsequent response to CT, but 3H-AA release from cells exposed to aspirin for 2.5 h was irreversibly inhibited. The data suggested that CT stimulation of AA metabolism may involve increased PLC activity.  相似文献   
2.
3.
The flora and fauna of Europe are linked by a common biogeographic history, most recently the Pleistocene glaciations that restricted the range of most species to southern refugial populations. Changes in population size and migration, as well as selection, have all left a signature on the genetic differentiation. Thus, three paradigms of postglacial recolonization have been described, inferred from the patterns of DNA differentiation. Yet some species, especially wide-ranging carnivores, exhibit little population structuring between the proposed refugia, although relatively few have been studied due to the difficulty of obtaining samples. Therefore, we investigated mitochondrial variation in pine martens, Martes martes, in order to understand the extent to which they were affected by glacial cycles, and compared the results with an analysis of sequences from polecats, Mustela putorius. A general lack of ancient lineages, and a mismatch distribution that is consistent with an expanding population, is evidence that the present-day M. martes and Mu. putorius in central and northern Europe colonized from a single European refugium following a recent glaciation. There has also been interspecific mitochondrial introgression between M. martes and the sable M. zibellina in Fennoscandia.  相似文献   
4.
Abstract Indomethacin was examined for its capacity to inhibit increases in adenosine-3',5'-monophosphate (cAMP) concentrations in Chinese hamster ovary (CHO) cells treated with cholera toxin. When added to the culture medium 1 h prior to cholera toxin (100 ng/ml), indomethacin (500 μg/ml) exhibited maximum protection against the typical increase in cAMP. Application of indomethacin at the same time as cholera toxin or up to 3 h after the toxin progressively decreased the drug's capacity to block further increases in cAMP. The drug appeared to block adenylate cyclase activity because addition of forskolin to drug-treated cells did not elicit a cAMP response. Binding of 125I-labeled cholera toxin to indomethacin-treated cells was also reduced by at least 50%. These data indicate that indomethacin's inhibitory effect on cAMP formation in cholera toxin-treated cells could be explained by its capacity to alter adenylate cyclase activity and cholera toxin binding.  相似文献   
5.
Abstract Ibuprofen, an inhibitor of prostaglandin synthesis in eukaryotic cells, was shown to inhibit the accumulation of 3',5'-cyclic adenosine monophosphate (cyclic AMP) in Chinese hamster ovary (CHO) cells exposed to cholera toxin. The inhibition was dose dependent, with a dose of 100 μg/ml reducing the cholera toxin response by approximately 50%, and maximal inhibition was observed when the drug was applied to the cells simulataneously with or 1 h before the toxin. Although ibuprofen also inhibited adenylate cyclase stimulation by forskolin, suggesting a nonspecific effect, the drug had no effect on cholera toxin-induced cyclic AMP accumulation when added to the culture medium 15 min or more after the toxin.  相似文献   
6.
After incubation of testosterone with 105000g microsomes of human foetal liver, 6alpha-hydroxytestosterone was isolated and identified by t.l.c. and g.l.c.-mass spectrometry. This is the first example of 6alpha-hydroxylation of C(19) steroids in the human liver, and the finding is discussed in relation to earlier reports of 6-oxygenated C(19) and C(18) steroids in pregnant women.  相似文献   
7.
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and that proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.  相似文献   
8.
Mesenchymal-derived stromal or progenitor cells, commonly called “MSCs,” have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.  相似文献   
9.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号