首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   3篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   8篇
  2011年   8篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
    
Summary The mRNA of the zona pellucida glycoprotein ZP3 was localized in frozen sections of pig ovaries, isolated oocytes and early embryos byin situ hybridization using biotinylated oligonucleotide probes. In follicles, the distribution of mRNA for ZP3 was correlated with the developmental stage: in primordial and primary follicles, the mRNA was shown to be predominantly localized in the oocyte. In secondary follicles, mRNA was found in both the oocyte and follicle cells. In tertiary and preovulatory follicles, the follicle cells showed distinct staining, whereas the oocyte was labelled weakly. In the early embryo, i.e. 2 days after fertilization, mRNA for ZP3 could not be demonstrated. Our results suggest that, in the pig, the zona pellucida protein ZP3 is synthesized by the oocyte and the follicle cells in sequence. After fertilization, synthesis of ZP3 is terminated.  相似文献   
2.
Summary Endothelial cells of the NMRI mouse strain express a cell surface glycoprotein recognized by the lectinDolichos biflorus agglutinin (DBA). This study documents a marked organ-specific increase in DBA-specific lectin binding of myocardium-derived endothelial cells (MEC) of the NMRI/GSF mouse during in vitro cultivation. An up to 20-fold increase in DBA binding sites is observed in long-term culture, an increase not found in other NMRI-derived endothelial cell lines (e.g., brain, aorta). The increase appears restricted to DBA in that binding with other lectins (PNA, WGA) was unaltered. NMRI MEC cultures maintain typical endothelial cell attributes such as cobblestone morphology on confluence, expression of endothelial cell-specific surface markers, and production of angiotensin-converting enzyme. Cultures routinely become aneuploid within 4 passages, several passages before upregulation of the DBA binding site(s). Myocardial endothelial cells sorted to obtain DBAhi and DBAlo cell populations generally maintained their sorted phenotype for 3 to 4 passages. Limiting dilution cloning resulted in clones varying in DBA expression. Clones for DBAhi expression maintained their DBA affinity for at least 10 passages (>30 doublings), whereas DBAlo clones gave rise to varying numbers of DBAhi cells within 2 to 4 passages. We hypothesize that the change in DBA affinity accompanies in vitro aging, that the change is independent of alterations in karyotype, and that the increase in DBA affinity may reflect a change in one or more other endothelial cell properties. Additional studies will be necessary to determine whether the in vitro changes are correlated with specific functional alterations and whether they accurately reflect progressive changes of MEC in vivo.  相似文献   
3.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   
4.
Angiogenesis is the sprouting of new capillary blood vessels from pre-existing ones. The kinin family of vasoactive peptides, formed by the serine protease tissue kallikrein from its endogenous multifunctional protein substrate kininogen, is believed to regulate the angiogenic process. The aim of this study was to determine the expression of tissue kallikrein and kinin receptors in an in vitro model of angiogenesis. Microvascular endothelial cells from the bovine mature and regressing corpus luteum were used only if they reacted with known endothelial cell markers. At first the cultured endothelial cells began sprouting, and within four weeks formed three-dimensional, capillary-like structures. Immunolabelling for tissue prokallikrein and the mature enzyme was intense in the angiogenic endothelial cells derived from mature corpora lutea. Immunoreactivity was lower in non-angiogenic endothelial cells and least in angiogenic endothelial cultures of the regressing corpus luteum. Additionally, using specific antisense DIG-labelled probes, tissue kallikrein mRNA was demonstrated in cells of the angiogenic phenotype. Immunolabelled kinin B2 receptors, but not kinin B1 receptors, were visualised on angiogenic endothelial cells. Our results suggest an important regulatory role for kinins in the multiple steps of the angiogenic cascade that may occur in wound healing and cancer cell growth.  相似文献   
5.
Microvascular endothelial cells from human neonatal foreskin were grown in vitro until a three-dimensional network of capillary-like structures was formed. All stages of the angiogenic cascade could be observed in this in vitro model, including the formation of an internal lumen. The microscopy focused on morphology, formation of an internal lumen, role of the extracellular matrix, polarity of the cells, and the time-course of the angiogenic cascade. Bright-field microscopy revealed cells arranged circularly side by side and the internal lumen of capillary-like structures was verified by electron microscopy. Immunolabeling revealed a peritubular localization of collagen IV. Reporter gene expression after the formation of capillary-like structures was marginally higher than control expression, but clearly lower than the expression of cells at the stage of proliferation. Highest transfection efficiencies were obtained using vectors with the CMV promoter and the long fragment of the Ets-1 promoter. This is a first study of transfection efficiencies mapped for stages of in vitro angiogenesis. We describe here the morphological features of a long-term in vitro model of angiogenesis of human microvascular endothelial cells that could be used for transfection studies, without the provision of an extracellular matrix substrate. The cells self-create their own extracellular matrix to proliferate and form a three-dimensional network of capillary-like structures with an internal lumen.  相似文献   
6.
BACKGROUND: Symmelia is a rare birth defect, often combined with severe malformations of the urogenital system and the lower gastrointestinal tract. Additionally, a deformed pelvis and various degrees of separation of the lower limbs are present. CASES: We report the examination findings of 3 autopsy specimens of symmelia using magnetic resonance imaging (MRI) and computed tomography (CT) with 3-dimensional (3D) reconstructions, and conventional X-ray. CONCLUSIONS: MRI and CT with the addition of 3D visualization can be used additionally with autopsy and conventional X-ray images in the investigation of such complex anatomical abnormalities.  相似文献   
7.
Mammalian reoviruses display serotype-specific patterns of tropism and disease in the murine central nervous system (CNS) attributable to polymorphisms in viral attachment protein σ1. While all reovirus serotypes use junctional adhesion molecule-A as a cellular receptor, they differ in their utilization of carbohydrate coreceptors. This observation raises the possibility that carbohydrate binding by σ1 influences reovirus pathology in the CNS. In this study, we sought to define the function of carbohydrate binding in reovirus neuropathogenesis. Newborn mice were inoculated intramuscularly with wild-type strain type 3 Dearing (T3D) and T3D-σ1R202W, a point mutant T3D derivative that does not bind sialic acid (SA). Infected mice were monitored for survival, and viral loads at the sites of primary and secondary replication were quantified. Fewer mice inoculated with the wild-type virus survived in comparison to those inoculated with the mutant virus. The wild-type virus also produced higher titers in the spinal cord and brain at late times postinoculation but lower titers in the liver in comparison to those produced by the mutant virus. In addition, the wild-type virus was more virulent and produced higher titers in the brain than the mutant following intracranial inoculation. These animal infectivity studies suggest that T3D-σ1R202W harbors a defect in neural growth. Concordantly, compared with the wild-type virus, the mutant virus displayed a decreased capacity to infect and replicate in primary cultures of cortical neurons, a property dependent on cell surface SA. These results suggest that SA binding enhances the kinetics of reovirus replication in neural tissues and highlight a functional role for sialylated glycans as reovirus coreceptors in the CNS.  相似文献   
8.
This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus and Vibrio vulnificus were assessed in natural seawater and in the Eastern oyster, Crassostrea virginica. The pathogens examined were V. vulnificus strain VV1003, V. parahaemolyticus O1:KUT (KUT stands for K untypeable), and V. parahaemolyticus O3:K6 and corresponding O3:K6 mutants deficient in the toxRS virulence regulatory gene or the rpoS alternative stress response sigma factor gene. Vibrios were selected for streptomycin resistance, which facilitated their enumeration. In natural seawater, oysters bioconcentrated each Vibrio strain for 24 h at 22°C; however, counts rapidly declined to near negligible levels by 72 h. In natural seawater with or without oysters, vibrios decreased more than 3 log units to near negligible levels within 72 h. Neither toxRS nor rpoS had a significant effect on Vibrio levels. In autoclaved seawater, V. parahaemolyticus O3:K6 counts increased 1,000-fold over 72 h. Failure of the vibrios to persist in natural seawater and oysters led to screening of the water samples for VPB on lawns of V. parahaemolyticus O3:K6 host cells. Many VPB, including Bdellovibrio and like organisms (BALOs; Bdellovibrio bacteriovorus and Bacteriovorax stolpii) and Micavibrio aeruginosavorus-like predators, were detected by plaque assay and electron microscopic analysis of plaque-purified isolates from Atlantic, Gulf Coast, and Hawaiian seawater. When V. parahaemolyticus O3:K6 was added to natural seawater containing trace amounts of VPB, Vibrio counts diminished 3 log units to nondetectable levels, while VPB increased 3 log units within 48 h. We propose a new paradigm that VPB are important modulators of pathogenic vibrios in seawater and oysters.  相似文献   
9.
W Gan  J Wu  L Lu  X Xiao  H Huang  F Wang  J Zhu  L Sun  G Liu  Y Pan  H Li  X Lin  Y Chen 《PloS one》2012,7(7):e42010
Dysregulation of the complement system has been linked to pathogenesis of hypertension. However, whether genetic changes of complement factor H (CFH) and its related genes are associated with hypertension is unknown. We genotyped three SNPs in the CFH gene cluster that are closely linked to age-related macular degeneration, namely rs1061170 (Y402H), rs2274700 (A473A) and rs7542235 (CFHR1–3Δ), and tested for their associations with blood pressure and hypertension risk in a population-based cohort including 3,210 unrelated Chinese Hans (50–70 years of age) from Beijing and Shanghai. We found that rs2274700 (A473A) and rs7542235 (CFHR1–3Δ) were both significantly associated with diastolic blood pressure (DBP) (β = 0.632–1.431, P≤0.038) and systolic blood pressure (SBP) (β = 1.567–4.445, P≤0.008), and rs2274700 (A473A) was associated with hypertension risk (OR [95%CI]: 1.175 [1.005–1.373], P = 0.048). Notably, the associations of rs2274700 (A473A) with DBP (P = 2.1×10−3), SBP (P = 8×10−5) and hypertension risk (P = 7.9×10−3) were significant only in the individuals with low CRP levels (<2.0 mg/l), but not in those with CRP levels ≥2.0 mg/l (P≥0.0807) (P for interaction ≤0.0467). However, no significant association between rs1061170 (Y402H) and blood pressure or hypertension risk was observed (P≥0.259). In conclusion, our results suggest that genetic variations in CFH and its related genes may contribute to hypertension risk in Chinese Hans.  相似文献   
10.
Brembs B  Plendl W 《Current biology : CB》2008,18(15):1168-1171
Learning about relationships between stimuli (i.e., classical conditioning [1]) and learning about consequences of one's own behavior (i.e., operant conditioning [2]) constitute the major part of our predictive understanding of the world. Since these forms of learning were recognized as two separate types 80 years ago [3], a recurrent concern has been the issue of whether one biological process can account for both of them [4, 5, 6, 7, 8, 9]. Today, we know the anatomical structures required for successful learning in several different paradigms, e.g., operant and classical processes can be localized to different brain regions in rodents [9] and an identified neuron in Aplysia shows opposite biophysical changes after operant and classical training, respectively [5]. We also know to some detail the molecular mechanisms underlying some forms of learning and memory consolidation. However, it is not known whether operant and classical learning can be distinguished at the molecular level. Therefore, we investigated whether genetic manipulations could differentiate between operant and classical learning in Drosophila. We found a double dissociation of protein kinase C and adenylyl cyclase on operant and classical learning. Moreover, the two learning systems interacted hierarchically such that classical predictors were learned preferentially over operant predictors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号