首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   21篇
  国内免费   1篇
  2022年   1篇
  2021年   8篇
  2019年   3篇
  2018年   1篇
  2017年   8篇
  2016年   11篇
  2015年   16篇
  2014年   12篇
  2013年   9篇
  2012年   24篇
  2011年   26篇
  2010年   19篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   17篇
  2005年   17篇
  2004年   17篇
  2003年   6篇
  2002年   17篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1981年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
1.
The microtubule motor protein kinesin‐5 (Eg5) provides an outward force on centrosomes, which drives bipolar spindle assembly. Acute inhibition of Eg5 blocks centrosome separation and causes mitotic arrest in human cells, making Eg5 an attractive target for anti‐cancer therapy. Using in vitro directed evolution, we show that human cells treated with Eg5 inhibitors can rapidly acquire the ability to divide in the complete absence of Eg5 activity. We have used these Eg5‐independent cells to study alternative mechanisms of centrosome separation. We uncovered a pathway involving nuclear envelope (NE)‐associated dynein that drives centrosome separation in prophase. This NE‐dynein pathway is essential for bipolar spindle assembly in the absence of Eg5, but also functions in the presence of full Eg5 activity, where it pulls individual centrosomes along the NE and acts in concert with Eg5‐dependent outward pushing forces to coordinate prophase centrosome separation. Together, these results reveal how the forces are produced to drive prophase centrosome separation and identify a novel mechanism of resistance to kinesin‐5 inhibitors.  相似文献   
2.
Sessile and vagile organisms differ from one another in some fundamental ways, including methods of resource acquisition and competition. Ant colonies are typically studied as sessile entities, even though a large fraction of ant species frequently relocate their nests in the course of their life history. Little is known about the causes and consequences of nest relocation, but it is likely that the costs and benefits of relocation are driven by nest quality, neighborhood competition, or resource availability. In this paper, we document several cycles of nest relocation in a population of the Central American ant Aphaenogaster araneoides . In our first experiment, we tracked the pattern of relocation, testing whether environmental characteristics and colony demography were associated with relocation behavior. In our second experiment, we manipulated resource availability by adding or subtracting leaf litter, which is known to predict colony growth. We found that colonies relocated their nests once per week on average and colonies often reoccupied nests from which they had once emigrated. Larger colonies relocated more frequently than smaller colonies, and quickly growing colonies utilized a greater number of nests within their home range compared to slowly growing colonies. Relocation events were most likely to occur in periods when vapor pressure deficits were greatest. Nearest neighbor distance and other measures of environmental conditions were not associated with relocation behavior and there was no significant effect of litter removal or supplementation. We found evidence that multiple natural enemies attacked A. araneoides colonies. Based on the demographic correlates of relocation and our rejection of other plausible hypotheses, we propose that nest relocation is driven by the escape from natural enemies.  相似文献   
3.
4.
Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods.  相似文献   
5.
6.
The marine parasitic protozoon Perkinus marinus synthesizes the polyunsaturated fatty acid arachidonic acid via the unusual alternative Delta8 pathway in which elongation of C18 fatty acids generates substrate for two sequential desaturations. Here we have shown that genes encoding the three P. marinus activities responsible for arachidonic acid biosynthesis (C18 Delta9-elongating activity, C20 Delta8 desaturase, C20 Delta5 desaturase) are genomically clustered and co-transcribed as an operon. The acyl elongation reaction, which underpins this pathway, is catalyzed by a FAE1 (fatty acid elongation 1)-like 3-ketoacyl-CoA synthase class of condensing enzyme previously only reported in higher plants and algae. This is the first example of an elongating activity involved in the biosynthesis of a polyunsaturated fatty acid that is not a member of the ELO/SUR4 family. The P. marinus FAE1-like elongating activity is sensitive to the herbicide flufenacet, similar to some higher plant 3-ketoacyl-CoA synthases, but unable to rescue the yeast elo2Delta/elo3Delta mutant consistent with a role in the elongation of polyunsaturated fatty acids. P. marinus represents a key organism in the taxonomic separation of the single-celled eukaryotes collectively known as the alveolates, and our data imply a lineage in which ancestral acquisition of plant-like genes, such as FAE1-like 3-ketoacyl-CoA synthases, occurred via endosymbiosis. The P. marinus FAE1-like elongating activity is also indicative of the independent evolution of the alternative Delta8 pathway, distinct from ELO/SUR4-dependent examples.  相似文献   
7.
8.
Omega6- and omega3-polyunsaturated C20 fatty acids represent important components of the human diet. A more regular consumption and an accordingly sustainable source of these compounds are highly desirable. In contrast with the very high levels to which industrial fatty acids have to be enriched in plant oils for competitive use as chemical feedstocks, much lower percentages of very-long-chain polyunsaturated fatty acids (VLCPUFA) in edible plant oils would satisfy nutritional requirements. Seed-specific expression in transgenic tobacco (Nicotiana tabacum) and linseed (Linum usitatissimum) of cDNAs encoding fatty acyl-desaturases and elongases, absent from all agronomically important plants, resulted in the very high accumulation of Delta6-desaturated C18 fatty acids and up to 5% of C20 polyunsaturated fatty acids, including arachidonic and eicosapentaenoic acid. Detailed lipid analyses of developing seeds from transgenic plants were interpretated as indicating that, after desaturation on phosphatidylcholine, Delta6-desaturated products are immediately channeled to the triacylglycerols and effectively bypass the acyl-CoA pool. Thus, the lack of available Delta6-desaturated acyl-CoA substrates in the acyl-CoA pool limits the synthesis of elongated C20 fatty acids and disrupts the alternating sequence of lipid-linked desaturations and acyl-CoA dependent elongations. As well as the successful production of VLCPUFA in transgenic oilseeds and the identification of constraints on their accumulation, our results indicate alternative strategies to circumvent this bottleneck.  相似文献   
9.
Under normal physiological conditions, coronary blood flow is closely matched with the rate of myocardial oxygen consumption. This matching of flow and metabolism is physiologically important due to the limited oxygen extraction reserve of the heart. Thus, when myocardial oxygen consumption is increased, as during exercise, coronary vasodilation and increased oxygen delivery are critical to preventing myocardial underperfusion and ischemia. Exercise coronary vasodilation is thought to be mediated primarily by the production of local metabolic vasodilators released from cardiomyocytes secondary to an increase in myocardial oxygen consumption. However, despite various investigations into this mechanism, the mediator(s) of metabolic coronary vasodilation remain unknown. As will be seen in this review, the adenosine, K(+)(ATP) channel and nitric oxide hypotheses have been found to be inadequate, either alone or in combination as multiple redundant compensatory mechanisms. Prostaglandins and potassium are also not important in steady-state coronary flow regulation. Other factors such as ATP and endothelium-derived hyperpolarizing factors have been proposed as potential local metabolic factors, but have not been examined during exercise coronary vasodilation. In contrast, norepinephrine released from sympathetic nerve endings mediates a feed-forward betaadrenoceptor coronary vasodilation that accounts for approximately 25% of coronary vasodilation observed during exercise. There is also a feed-forward alpha-adrenoceptor-mediated vasoconstriction that helps maintain blood flow to the vulnerable subendocardium when heart rate, myocardial contractility, and oxygen consumption are elevated during exercise. Control of coronary blood flow during pathophysiological conditions such as hypertension, diabetes mellitus, and heart failure is also addressed.  相似文献   
10.
Pulmonary embolism (PE) is a leading cause of sudden cardiac death, and a model is needed for testing potential treatments. In developing a model, we compared the hemodynamic effects of isoflurane and α-chloralose in an acute swine model of PE because the choice of anesthesia will likely affect the cardiovascular responses of an animal to PE. At baseline, swine that received α-chloralose (n = 6) had a lower heart rate and cardiac output and higher SpO2, end-tidal CO2, and mean arterial pressure than did those given isoflurane (n = 9). After PE induction, swine given α-chloralose compared with isoflurane exhibited a lower heart rate (63 ± 10 compared with 116 ± 15 bpm) and peripheral arterial pressure (52 ± 12 compared with 61 ± 12 mm Hg); higher SpO2 (98% ± 3% compared with 95% ± 1%), end-tidal CO2 (35 ± 4 compared with 32 ± 5), and systolic blood pressure (121 ± 8 compared with 104 ± 20 mm Hg); and equivalent right ventricular:left ventricular ratios (1.32 ± 0.50 compared with 1.23 ± 0.19) and troponin I mean values (0.09 ± 0.07 ng/mL compared with 0.09 ± 0.06 ng/mL). Isoflurane was associated with widely variable fibrinogen and activated partial thromboplastin time. Intraexperiment mortality was 0 of 6 animals for α-chloralose and 2 of 9 swine for isoflurane. All swine anesthetized with α-chloralose survived with sustained pulmonary hypertension, RV-dilation-associated cardiac injury without the confounding vasodilatory or coagulatory effects of isoflurane. These data demonstrate the physiologic advantages of α-chloralose over isoflurane for anesthesia in a swine model of severe submassive PE.Abbreviations: LV, left ventricle; PAP, pulmonary arterial pressure; PE, pulmonary embolism; RV, right ventriclePulmonary embolism (PE) is one of the leading causes of noncardiac sudden death in Western nations and is the third most common cause of cardiovascular morbidity.4,6,7,18 In survivors, severe PE damages the right heart, leading to a clinical course complicated by hypotension and circulatory shock, suggesting acute right heart failure in about 10% of patients and followed by persistent pulmonary hypertension or right ventricular dysfunction and dyspnea in at least 15% of patients.9,15,16,23,29 To test treatments to reduce right heart failure, a standardized model that is repeatable, accurate, and precise and that mimics the gross pathologic, cardiovascular, pulmonary, autonomic, hematologic, biochemical, and cellular characteristics of PE in humans with disease is needed.8Three lines of rationale favor domestic pigs as a model for PE. Several publications, using different methods of anesthesia, have found that swine manifest hemodynamic responses similar to those of humans in the presence of autologous PE, including elevated heart rate, decreased cardiac output, and reduced oxygen saturation.2,12,30 Swine have similar platelet concentrations, and their coagulation profile on thromboelastography has been shown to be similar to humans, with the exception of higher fibrin crosslinking but less fibrin, leading to resistance to plasmin.5,11,19,34 Market swine, which would otherwise be destined for slaughter, are relatively cost effective compared with other large animals and are of sufficient size for placement of an adult pulmonary arterial catheter for measurement of pulmonary vascular resistance in a closed-chest preparation.In view of the differences in the hemodynamic effects of different anesthetic agents, the choice of anesthesia will likely affect the cardiovascular responses of an animal to PE. However, current literature lacks a methodologic publication that compares the cardiovascular, right ventricular, pulmonary, and hematologic responses to PE in closed-chest swine models incorporating different anesthetic regimens.Figure 1 presents features of an ideal animal model for the purpose of testing treatments for PE. To develop a swine model of PE that closely resembles this physiologic ideal model, we induced PE in swine maintained in a surgical plane of anesthesia with either isoflurane or α-chloralose. Each of these agents has potential advantages and disadvantages. Isoflurane can be titrated minute by minute but causes undesirable vasodilation, whereas α-chloralose is believed to preserve cardiovascular reflexes but requires heating to dissolve and continuous infusion or repeated boluses.26,35 We hypothesized that, compared with isoflurane, α-chloralose would meet more of the features described in Figure 1.Open in a separate windowFigure 1.Desirable features of large animal model of severe submassive PE designed for translational research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号