首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3413篇
  免费   252篇
  国内免费   244篇
  2024年   6篇
  2023年   20篇
  2022年   54篇
  2021年   139篇
  2020年   106篇
  2019年   132篇
  2018年   132篇
  2017年   105篇
  2016年   136篇
  2015年   191篇
  2014年   233篇
  2013年   268篇
  2012年   296篇
  2011年   269篇
  2010年   186篇
  2009年   148篇
  2008年   183篇
  2007年   183篇
  2006年   168篇
  2005年   141篇
  2004年   102篇
  2003年   99篇
  2002年   95篇
  2001年   45篇
  2000年   50篇
  1999年   53篇
  1998年   30篇
  1997年   45篇
  1996年   36篇
  1995年   34篇
  1994年   22篇
  1993年   26篇
  1992年   23篇
  1991年   30篇
  1990年   15篇
  1989年   15篇
  1988年   7篇
  1987年   15篇
  1986年   6篇
  1985年   11篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1978年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   4篇
  1967年   3篇
排序方式: 共有3909条查询结果,搜索用时 281 毫秒
1.
Gan  Huijie  Emmett  Bryan D.  Drinkwater  Laurie E. 《Plant and Soil》2021,462(1-2):543-560
Plant and Soil - Agricultural practices often have persistent effects on soil physicochemical properties and soil biota, which can feedback to influence plant performance. We investigated...  相似文献   
2.
Lactate esters are widely used as food additives, perfume materials, medicine additives, and personal care products. The objective of this work was to investigate the effect of a series of lactate esters as penetration enhancers on the in vitro skin permeation of four drugs with different physicochemical properties, including ibuprofen, salicylic acid, dexamethasone and 5-fluorouracil. The saturated donor solutions of the evaluated drugs in propylene glycol were used in order to keep a constant driving force with maximum thermodynamic activity. The permeability coefficient (K p), skin concentration of drugs (SC), and lag time (T), as well as the enhancement ratios for K p and SC were recorded. All results indicated that lactate esters can exert a significant influence on the transdermal delivery of the model drugs and there is a structure-activity relationship between the tested lactate esters and their enhancement effects. The results also suggested that the lactate esters with the chain length of fatty alcohol moieties of 10–12 are more effective enhancers. Furthermore, the enhancement effect of lactate esters increases with a decrease of the drug lipophilicity, which suggests that they may be more efficient at enhancing the penetration of hydrophilic drugs than lipophilic drugs. The influence of the concentration of lactate esters was evaluated and the optimal concentration is in the range of 5∼10 wt.%. In sum, lactate esters as a penetration enhancer for some drugs are of interest for transdermal administration when the safety of penetration enhancers is a prime consideration.  相似文献   
3.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
4.
Cecropin XJ, as a heat stable antimicrobial peptide (AMP), displayed broad bacteriostatic activities, effectively inhibited proliferation of cancer cells and induced cell apoptosis in vitro. However, it exhibited little hemolytic activity and very low cytotoxicity to erythrocytes and normal cells. Although exerts multiple remarkable bioactivities, the refined molecular conformation of native Cecropin XJ remains unsolved. The aim of the present study is to comprehensively investigate the physicochemical characteristics and structure-function relationship of this antimicrobial peptide by using a series of bioinformatics and experimental approaches. In this study, we revealed that the mature Cecropin XJ consists of 41 amino acids, containing two α-helical structures from Lys7 to Lys25 and from Ala29 to Ile39. The phylogenetic tree indicated that Cecropin XJ belongs to the Class I AMPs of cecropin family. Hydrophobic analysis showed Cecropin XJ is a typical amphiphilic molecule. The surface of Cecropin XJ was found to have a much wide range of electrostatic potential from ?83.243 to +83.243. The amphipathicity and surface potential of Cecropin XJ partially supported the AMP pore-forming hypothesis. Scanning electron microscopy experimentally confirmed the damages of Cecropin XJ to microbial membrane. Four predicted docking sites respectively for magnesium ion (Mg2+), adenosine diphosphate (ADP), bacteriopheophytin (BPH), and guanosine triphosphate (GTP) were found on the surface of Cecropin XJ. Thereinto, Mg2+ was experimentally proved to suppress the antibacterial activity of Cecropin XJ; both GTP and ADP enhanced the bactericidal activities to varying degrees. The present study provides a foundation for further investigation of molecular evolution, structural modification, and functional mechanisms of Cecropin XJ.  相似文献   
5.
Abstract: In this study we examined the effect on oligodendroglial survival of exogenous cystine deprivation. Oligodendroglia isolated from mixed glial primary cultures derived from brains of 1-day-old rats, and then grown for 3 days, were markedly dependent on extracellular cystine for survival. The EC50 values for cystine for a 24-h exposure ranged from 2 to 65 µ M . After 6 h of cystine deprivation, the cellular glutathione level decreased to 21 ± 13% of the control. Free radical scavengers (α-tocopherol, ascorbate, idebenone, and N-tert -butyl-α-phenylnitrone) were protective against cystine deprivation but had no effect on the glutathione level. An iron chelator, desferrioxamine mesylate, also was protective. These findings suggest that intracellular hydroxyl radicals are important for this toxicity. In contrast to the observations in 3-day-old cultures, the dependence on exogenous cystine for cell viability was not observed consistently in oligodendroglia cultured for 6 days before the onset of cystine deprivation. Several observations suggested that this loss of cystine dependence was due to a diffusible factor. Sensitivity to the toxicity of cystine deprivation in day 6 cultures increased as the volume of medium was increased from 0.3 to 2 ml. Furthermore, preincubation of cystine-depleted medium with astrocyte cultures eliminated the toxicity of the cystine deprivation. HPLC assay of the conditioned cystine-depleted medium showed no significant change in cystine or cysteine concentration. We conclude that oligodendroglia are highly susceptible to cystine deprivation in day 3 cultures and that this susceptibility is due to the accumulation of intracellular free radicals in the setting of glutathione depletion. The resistance of day 6 oligodendroglial cultures is caused at least in part by a diffusible factor.  相似文献   
6.
7.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   
8.
Binding of HIV to its receptor, the CD4 molecule of lymphocytes, can be prevented by chemical agents. These agents could be considered as potential anti-AIDS drugs. We have shown that aurin tricarboxylic acid (ATA, 3 microM) specifically blocks the binding of gp120, the HIV coat protein, to the CD4 molecule. We have also found that ATA prevents the binding of interferon-alpha to its receptor in a dose-dependent manner (12-50 microM range). Membrane potential shift, associated with binding of interferon-alpha to its receptor, was also blocked by ATA in a dose-dependent fashion. Our results indicate that potential anti-AIDS drugs should be screened for such undesired side effects.  相似文献   
9.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
10.
The genome sequence analysis of a clinical Vibrio cholerae VC35 strain from an outbreak case in Malaysia indicates multiple genes involved in host adaptation and a novel Na+-driven multidrug efflux pump-coding gene in the genome of Vibrio cholerae with the highest similarity to VMA_001754 of Vibrio mimicus VMA223.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号