首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10683篇
  免费   721篇
  国内免费   768篇
  2024年   22篇
  2023年   100篇
  2022年   151篇
  2021年   497篇
  2020年   362篇
  2019年   425篇
  2018年   416篇
  2017年   313篇
  2016年   415篇
  2015年   665篇
  2014年   785篇
  2013年   879篇
  2012年   940篇
  2011年   896篇
  2010年   531篇
  2009年   490篇
  2008年   573篇
  2007年   504篇
  2006年   454篇
  2005年   388篇
  2004年   313篇
  2003年   278篇
  2002年   229篇
  2001年   181篇
  2000年   164篇
  1999年   158篇
  1998年   120篇
  1997年   117篇
  1996年   103篇
  1995年   88篇
  1994年   89篇
  1993年   78篇
  1992年   75篇
  1991年   68篇
  1990年   69篇
  1989年   53篇
  1988年   34篇
  1987年   36篇
  1986年   22篇
  1985年   31篇
  1984年   10篇
  1983年   17篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
The functioning of the vertebrate eye depends on its absolute size, which is presumably adapted to specific needs. Eye size variation in lidless and spectacled colubrid snakes was investigated, including 839 specimens belonging to 49 genera, 66 species and subspecies. Variations of adult eye diameters (EDs) in both absolute and relative terms between species were correlated with parameters reflecting behavioral ecology. In absolute terms, eye of arboreal species was larger than in terrestrial and semiaquatic species. For diurnal species, EDs of terrestrial species do not differ from semiaquatic species; for nocturnal species the ED of terrestrial species is larger than fossorial species but not different from semiaquatic species. In relative terms, ED did not differ significantly by habitat for diurnal species. Although the ED of terrestrial species is larger than fossorial species there were no differences for nocturnal species between semiaquatic and fossorial snakes. In contrast to other vertebrates studied to date, colubrid EDs in absolute and relative terms are larger in diurnal than in nocturnal species. These observations suggest that among colubrid snakes, eye size variation reflects adaptation to specific habitats, foraging strategies and daily activities, independently of phylogeny. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Ding  Jingyi  Eldridge  David J. 《Plant and Soil》2021,459(1-2):173-183
Plant and Soil - Perennial plants play important roles in maintaining ecosystem functions by forming fertile islands beneath their canopies. Little is known about how the fertile island effect...  相似文献   
3.
Lactate esters are widely used as food additives, perfume materials, medicine additives, and personal care products. The objective of this work was to investigate the effect of a series of lactate esters as penetration enhancers on the in vitro skin permeation of four drugs with different physicochemical properties, including ibuprofen, salicylic acid, dexamethasone and 5-fluorouracil. The saturated donor solutions of the evaluated drugs in propylene glycol were used in order to keep a constant driving force with maximum thermodynamic activity. The permeability coefficient (K p), skin concentration of drugs (SC), and lag time (T), as well as the enhancement ratios for K p and SC were recorded. All results indicated that lactate esters can exert a significant influence on the transdermal delivery of the model drugs and there is a structure-activity relationship between the tested lactate esters and their enhancement effects. The results also suggested that the lactate esters with the chain length of fatty alcohol moieties of 10–12 are more effective enhancers. Furthermore, the enhancement effect of lactate esters increases with a decrease of the drug lipophilicity, which suggests that they may be more efficient at enhancing the penetration of hydrophilic drugs than lipophilic drugs. The influence of the concentration of lactate esters was evaluated and the optimal concentration is in the range of 5∼10 wt.%. In sum, lactate esters as a penetration enhancer for some drugs are of interest for transdermal administration when the safety of penetration enhancers is a prime consideration.  相似文献   
4.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
5.
Cecropin XJ, as a heat stable antimicrobial peptide (AMP), displayed broad bacteriostatic activities, effectively inhibited proliferation of cancer cells and induced cell apoptosis in vitro. However, it exhibited little hemolytic activity and very low cytotoxicity to erythrocytes and normal cells. Although exerts multiple remarkable bioactivities, the refined molecular conformation of native Cecropin XJ remains unsolved. The aim of the present study is to comprehensively investigate the physicochemical characteristics and structure-function relationship of this antimicrobial peptide by using a series of bioinformatics and experimental approaches. In this study, we revealed that the mature Cecropin XJ consists of 41 amino acids, containing two α-helical structures from Lys7 to Lys25 and from Ala29 to Ile39. The phylogenetic tree indicated that Cecropin XJ belongs to the Class I AMPs of cecropin family. Hydrophobic analysis showed Cecropin XJ is a typical amphiphilic molecule. The surface of Cecropin XJ was found to have a much wide range of electrostatic potential from ?83.243 to +83.243. The amphipathicity and surface potential of Cecropin XJ partially supported the AMP pore-forming hypothesis. Scanning electron microscopy experimentally confirmed the damages of Cecropin XJ to microbial membrane. Four predicted docking sites respectively for magnesium ion (Mg2+), adenosine diphosphate (ADP), bacteriopheophytin (BPH), and guanosine triphosphate (GTP) were found on the surface of Cecropin XJ. Thereinto, Mg2+ was experimentally proved to suppress the antibacterial activity of Cecropin XJ; both GTP and ADP enhanced the bactericidal activities to varying degrees. The present study provides a foundation for further investigation of molecular evolution, structural modification, and functional mechanisms of Cecropin XJ.  相似文献   
6.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   
7.
8.
It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.  相似文献   
9.
10.
Lysine acetylation, one of the major types of post-translational modifications, plays critical roles in regulating gene expression and protein function. Histone deacetylases(HDACs) are responsible for removing acetyl groups from lysines of both histone and non-histone proteins. While tremendous progress has been made in understanding the function and mechanism of HDACs in animals in the past two decades, nearly half of the HDAC studies in plants were reported within the past five years. In this review,we summarize the major findings on plant HDACs, with a focus on the model plant Arabidopsis thaliana, and highlight the components, regulatory mechanisms, and biological functions of HDAC complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号