首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   12篇
  国内免费   6篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   2篇
  2011年   3篇
  2010年   7篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
排序方式: 共有53条查询结果,搜索用时 46 毫秒
1.
为研究两栖类在冬眠期及其前后消化道嗜银细胞是否参与冬眠期的消化调节,本文以牛蛙(Rana catesbeiana)为实验对象,采用Grimelius银染法,对冬眠期前(n = 10)、冬眠期(n = 10)和冬眠期后(n = 10)牛蛙消化道嗜银细胞的形态及密度进行比较研究。结果表明,牛蛙消化道各部位均有嗜银细胞分布;牛蛙消化道嗜银细胞形态在冬眠期、冬眠期前及冬眠期后无差异,均为锥体型、梭型和椭圆型;牛蛙消化道各部位具有外分泌功能的锥体型和梭形嗜银细胞密度在3个时期均显著高于具有内分泌功能的椭圆型嗜银细胞密度(P < 0.01);3个时期牛蛙消化道嗜银细胞分布密度高峰均位于空肠处,但低谷有所不同,冬眠期前和冬眠期后牛蛙消化道嗜银细胞的分布密度低谷位于食管,而冬眠期其分布密度低谷位于贲门;3个时期相比,冬眠期前和冬眠期幽门处分布密度差异不显著(P > 0.05),其余部位均有差异,且食管、胃、十二指肠、空肠、回肠和直肠中嗜银细胞分布密度在冬眠期显著高于冬眠期前和冬眠期后(P < 0.05);冬眠期前和冬眠期后消化道嗜银细胞分布密度呈倒“U”型趋势,冬眠期分布密度呈现“~”型趋势。结合相关研究,推测牛蛙嗜银细胞分布密度的改变可能与机体适应不同生理状态及消化功能的调节有关。  相似文献   
2.
Kuang  Cheng-Hao  Zhao  Xiao-Fang  Yang  Ke  Zhang  Zhi-Peng  Ding  Li  Pu  Zhi-En  Ma  Jian  Jiang  Qian-Tao  Chen  Guo-Yue  Wang  Ji-Rui  Wei  Yu-Ming  Zheng  You-Liang  Li  Wei 《Physiology and Molecular Biology of Plants》2020,26(6):1295-1307
Physiology and Molecular Biology of Plants - The spike traits of wheat can directly affect yield. F2 and F2:3 lines derived from the cross of the multi-spikelet female 10-A and the uni-spikelet...  相似文献   
3.
High-density genetic linkage maps are necessary for precisely mapping quantitative trait loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombinant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding parental line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and 128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of 1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL), grain width (GW) and grain thickness (GT) were detected in nine ecological environments (Beijing, Shijiazhuang and Kaifeng) during five years between 2010–2014 by inclusive composite interval mapping (ICIM) (LOD≥2.5). Among which, 17 QTLs for TGW were mapped on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic variations ranging from 2.62% to 44.39%. QGl.cau-2A.2 can be detected in all the environments with the largest phenotypic variations, indicating that it is a major and stable QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to 12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to 36.42%. In particular, QTL QGt.cau-5A.1 with phenotypic variations of 6.82–23.59% was detected in all the nine environments. Moreover, pleiotropic effects were detected for several QTL loci responsible for grain shape and size that could serve as target regions for fine mapping and marker assisted selection in wheat breeding programs.  相似文献   
4.
Guo ZF  Yan ZH  Wang JR  Wei YM  Zheng YL 《Hereditas》2005,142(2005):56-64
The high-molecular-weight (HMW) prolamines subunits and their coding sequences from wheat-related diploid species Crithopsis delileana were investigated. Only one HMW prolamine subunit with the similar electrophoresis mobility to the y-type HMW glutenin subunit of hexaploid wheat was observed in two accessions of C. delileana by SDS-PAGE analyses of the total storage protein fractions. It was confirmed by sequencing and expression analysis that this prolamine subunit was an x-type subunit. The amino acid sequence of this subunit had the similar typical structure to those of x-type HMW glutenin genes previously described in wheat. An in-frame stop codon was found in the coding sequences of y-type prolamine subunits. It was found by specifically extraction of HMW prolamines and sequence analysis that the coding regions of Ky prolamine subunit gene is very likely to be not expressed as a full-length protein. Phylogenetic analysis indicated that the Kx subunit could be clustered together with 1Ax1 subunit by an interior paralleled branch, and Ky subunit (inactive) was most closely related to the 1Ay subunit. The coding sequences of Kx subunit could successfully be expressed in bacterial expression system, and the expressed protein had the same electrophoresis mobility as the Kx subunit from the seed of C. delileana. It was the first time that the HMW prolamines subunits encoded by K genome of C. delileana were characterized.  相似文献   
5.
Sequence polymorphisms and phylogenetic relationships from different genomes of 25 diploid species in Triticeae (Poaceae) were evaluated by using the sequences of y-type high-molecular-weight glutenin promoter (y-HGP). The length of the amplified y-HGP sequences ranged from 845 to 915 base pairs (bp) in the 25 species of Triticeae. Multiple sequence alignment showed conserved and variable parts in the y-HGP sequences. Higher sequence conservation was detected in the regulatory elements of y-HGP. An 85-bp deletion was found in eight species of Triticum, Aegilops, and Hordeum. Several species-specific indels were identified in the y-HGP from Psathyrostachys, Hordeum, and Pseudoroegneria. Maximum parsimony (MP) and Bayesian analyses defined an Aegilops/Triticum group consisting of closely related species. A close relationship between Pseudoroegneria and the clade of Australopyrum, Dasypyrum, and Agropyron was also strongly supported in the topologies of MP and Bayesian trees. As y-HGP has sufficient amounts of genetic variation and is a single-copy region in diploid Triticeae, it is useful in phylogenetic analyses of this group.  相似文献   
6.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   
7.
8.
为了探究植物与固碳相关属性在不同功能群、器官和物种间的差异, 以及这些属性对不同土地利用方式的响应, 2012年8月对内蒙古大针茅草原的4个样地(长期无干扰样地、长期自由放牧样地、4年围封样地和4年围封割草样地)进行了群落调查, 并采集样地中的常见植物, 测定了与植物固碳相关的属性, 包括全碳含量、全氮含量、碳氮比、纤维素含量、木质素含量和酸性洗涤纤维含量等。以常见植物为对象, 在功能群水平研究了各土地利用方式下全碳含量、全氮含量和碳氮比的差异; 针对各样地的共有种——糙隐子草(Cleistogenes squarrosa)、大针茅(Stipa grandis)、冷蒿(Artemisia frigida)、羊草(Leymus chinensis)和猪毛菜(Salsola collina), 从物种和器官水平分析了不同土地利用方式下植物的固碳相关属性。结果表明: 大针茅草原植物不同功能群、物种和器官间的固碳相关属性存在极显著差异, 不同土地利用方式下大针茅草原不同功能型、物种和器官的固碳相关属性有显著差异。与其他利用方式相比, 4年围封割草对植物与固碳相关属性的影响最为明显, 功能群、器官和物种水平的植物氮含量均有下降。糙隐子草和猪毛菜的这些属性对长期自由放牧的响应敏感, 且方向相反。  相似文献   
9.
Fifty-six sequences encoding the pina protein were characterized from three species or subspecies of einkorn wheat. These sequences contained 1,595 nucleotides, including 1,270 conserved sites, 21 single nucleotide polymorphisms (SNPs), and 16 indels. The average frequency of SNPs and indels was one out of 76.1 and 99.9 bases, respectively. Five SNPs and no indels were found in the translated sequences. Fourteen haplotypes were defined, and the accessions in each haplotype ranged from 1 to 18. There were nine haplotypes in Triticum monococcum ssp. aegilopoides, eight in T. monococcum ssp. monococcum, and two in T. urartu. Phylogenetic analysis showed that pina genes from different species or subspecies could be clearly differentiated based on the open reading frame. Genes from T. urartu grouped together, whereas genes from T. monococcum ssp. aegilopoides and T. monococcum ssp. monococcum were shared by three and two clusters, respectively. Both the haplotype and phylogenetic analyses indicated that T. monococcum ssp. aegilopoides was more diverse. These results would contribute to the understanding of functional aspects and efficient utilization of pina genes.  相似文献   
10.
High molecular weight (HMW) glutenin subunits (GS) play a key role in the determination of end-use quality of wheat and other cereal crops. In this study, we report the isolation and characterization of both promoter region and ORF of novel HMW-GS allele 1St1.3 from a perennial Triticeae species, Elymus canadensis. The amino acid (AA) sequences of E. canadensis 1St1.3 were deduced as 434 aa. Its protein primary structure comprises a signal peptide with a conserved N-terminal domain, a central repetitive domain and a C-terminal domain. E. canadensis 1St 1.3 possesses several distinct characteristics which are different from those of wheat HMW-GSs. The N-terminal domains of E. canadensis 1St 1.3 resemble that of y-type subunits, while their C-terminal domains are more similar to x-type subunits. The deletion of 85 bp fragment has been observed in promoter region of 1St 1.3, however which has not interrupted the expression of this gene. Our results indicate that 1St 1.3 is novel HMW-GS variants which will be valuable for enhancing our understanding of structural differentiation and the evolutionary relationship among HMW-GSs in Triticeae species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号