首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1966年   2篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.  相似文献   
2.
In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS), our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI) system utilizing a wide-field (imaging area = 17cm2) 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR) was found to be greater than 40dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0–8.9cm-1) and scattering (μs’ = 7.0–9.7cm-1) coefficients. Very low inter-channel and CCD crosstalk was observed (2% max) when used on turbid media (including breast tissue). A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75mm spatially resolved diffuse reflectance images (λ = 450–600nm) of an entire margin (area = 17cm2) in 13.8 minutes (1.23cm2/min). Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative distribution function (eCDF) analysis is used to reduce optical property maps to quantitative distributions representing the morphological landscape of breast tumor margins. The optimizations presented in this work provide an avenue to rapidly survey large tissue areas on intra-operative time scales with improved sensitivity to regions of focal disease that may otherwise be overlooked.  相似文献   
3.
Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level.  相似文献   
4.
In 1990, a joint Nordic-Russian project was initiated in order to make independent estimations of the effective dose to selected groups of inhabitants in a highly contaminated area around the city of Novozybkov in the western Bryansk region of Russia. The inhabitants were living in six villages with initial contamination levels of 137Cs between 0.9 and 2.7 MBq m−2. Some villages had been decontaminated, others not. Both school children and adults participated in the study. The external irradiation of 100–130 inhabitants was determined during 1 month in September-October each year from 1990 to 2000 (except 1999), using individual thermoluminescent dosemeters. The body burden of 137,134Cs was determined by in vivo measurements in about 500 inhabitants annually from 1991 to 2000, and for a subgroup also with analysis of the 137Cs concentration in urine. The mean effective dose (E) from external and internal irradiation due to 137,134Cs deposition varied between 2.5 and 1.2 mSv per year between 1990 and 2000. The total mean E decreased, on average, by 9% per year, while the mean external dose decreased by 16% per year. The dose rate from internal radiation decreased more slowly than the dose rate from external radiation, and also showed an irregular time variation. The contribution from the internal dose to the total E was 30–50%, depending on the village. Predictions for the long-term changes in the effective dose to people living in the areas are presented. The cumulated E for the 70 years following the accident was estimated to be about 90 mSv with the assumption that both internal and external dose decrease by 2% per year after year 2000. The highest E during a life-time received by single individuals living in the area may amount to around 500 mSv considering the individual variations in E.  相似文献   
5.
Reactive oxygen species (ROS) induce DNA damage with the ensuing activation of the chromosomal repair enzyme poly(ADP-ribose) polymerase (PARP). ROS also interact with the function of carotid body chemoreceptor cells. The possibility arises that PARP is part of the carotid chemosensing process. This study seeks to determine the presence of PARP and its changes in response to contrasting chemical stimuli, hypoxia and hyperoxia, both capable of generating ROS, in cat carotid bodies. The organs were dissected from anesthetized cats exposed in vivo to acute normoxic (PaO2 approximately 90 mmHg), hypoxic (PaO2 approximately 25 mmHg), and hyperoxic (PaO2 > 400 mmHg) conditions. Carotid body homogenate was the source of PARP and [adenine 14C] NAD was the substrate in the assay. Specimens of the superior cervical ganglion and brainstem were used as reference tissues. We found that PARP activity amounted to 27 pmol/mg protein/min in the normoxic carotid body. The activity level more than doubled in both hypoxic and hyperoxic carotid bodies. Changes of PARP in the reference tissues were qualitatively similar. We conclude that PARP is present in the carotid body but the augmentation of the enzyme activity in both hypoxia and hyperoxia reflects DNA damage, induced likely by ROS and being universal for neural tissues, rather than a specific involvement of PARP in the chemosensing process.  相似文献   
6.
We are constantly exposed to a mixture of sounds of which only few are important to consider. In order to improve detectability and to segregate important sounds from less important sounds, the auditory system uses different aspects of natural sound sources. Among these are (a) its specific location and (b) synchronous envelope fluctuations in different frequency regions. Such a comodulation of different frequency bands facilitates the detection of tones in noise, a phenomenon known as comodulation masking release (CMR). Physiological as well as psychoacoustical studies usually investigate only one of these strategies to segregate sounds. Here we present psychoacoustical data on CMR for various virtual locations of the signal by varying its interaural phase difference (IPD). The results indicate that the masking release in conditions with binaural (interaural phase differences) and across-frequency (synchronous envelope fluctuations, i.e. comodulation) cues present is equal to the sum of the masking releases for each of the cues separately. Data and model predictions with a simplified model of the auditory system indicate an independent and serial processing of binaural cues and monaural across-frequency cues, maximizing the benefits from the envelope comparison across frequency and the comparison of fine structure across ears.
Bastian EppEmail:
  相似文献   
7.
8.
9.
10.
Real-world sounds like speech or traffic noise typically exhibit spectro-temporal variability because the energy in different spectral regions evolves differently as a sound unfolds in time. However, it is currently not well understood how the energy in different spectral and temporal portions contributes to loudness. This study investigated how listeners weight different temporal and spectral components of a sound when judging its overall loudness. Spectral weights were measured for the combination of three loudness-matched narrowband noises with different center frequencies. To measure temporal weights, 1,020-ms stimuli were presented, which randomly changed in level every 100 ms. Temporal weights were measured for each narrowband noise separately, and for a broadband noise containing the combination of the three noise bands. Finally, spectro-temporal weights were measured with stimuli where the level of the three narrowband noises randomly and independently changed every 100 ms. The data consistently showed that (i) the first 300 ms of the sounds had a greater influence on overall loudness perception than later temporal portions (primacy effect), and (ii) the lowest noise band contributed significantly more to overall loudness than the higher bands. The temporal weights did not differ between the three frequency bands. Notably, the spectral weights and temporal weights estimated from the conditions with only spectral or only temporal variability were very similar to the corresponding weights estimated in the spectro-temporal condition. The results indicate that the temporal and the spectral weighting of the loudness of a time-varying sound are independent processes. The spectral weights remain constant across time, and the temporal weights do not change across frequency. The results are discussed in the context of current loudness models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号