首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2020年   1篇
  2017年   2篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2001年   2篇
  2000年   2篇
排序方式: 共有16条查询结果,搜索用时 78 毫秒
1.
Myocardial constitutive No production depends on the activity of both endothelial and neuronal NOS (eNOS and nNOS, respectively). Stimulation of myocardial β3-adrenergic receptor (β3-AR) produces a negative inotropic effect that is dependent on eNOS. We evaluated whether nNOS also plays a role in β3-AR signaling and found that the β3-AR-mediated reduction in cell shortening and [Ca2+]i transient amplitude was abolished both in eNOS−/− and nNOS−/− left ventricular (LV) myocytes and in wild type LV myocytes after nNOS inhibition with S-methyl-l-thiocitrulline. LV superoxide (O2˙̄) production was increased in nNOS−/− mice and reduced by l-Nω-nitroarginine methyl ester (l-NAME), indicating uncoupling of eNOS activity. eNOS S-glutathionylation and Ser-1177 phosphorylation were significantly increased in nNOS−/− myocytes, whereas myocardial tetrahydrobiopterin, eNOS Thr-495 phosphorylation, and arginase activity did not differ between genotypes. Although inhibitors of xanthine oxidoreductase (XOR) or NOX2 NADPH oxidase caused a similar reduction in myocardial O2˙̄, only XOR inhibition reduced eNOS S-glutathionylation and Ser-1177 phosphorylation and restored both eNOS coupled activity and the negative inotropic and [Ca2+]i transient response to β3-AR stimulation in nNOS−/− mice. In summary, our data show that increased O2˙̄ production by XOR selectively uncouples eNOS activity and abolishes the negative inotropic effect of β3-AR stimulation in nNOS−/− myocytes. These findings provide unequivocal evidence of a functional interaction between the myocardial constitutive NOS isoforms and indicate that aspects of the myocardial phenotype of nNOS−/− mice result from disruption of eNOS signaling.  相似文献   
2.
There is now evidence for the involvement of four beta-adrenoceptor populations in the regulation of cardiac function by catecholamines. Beta1- and beta2-adrenoceptor stimulation classically produces an increase in contractility. A fourth beta-adrenoceptor, as yet uncloned and designated provisionally as a beta4-adrenoceptor, also mediates a positive inotropic effect. Beta3-adrenoceptors, which had been cloned at the end of the eighties, has been extensively studied as a potential target for antiobesity and antidiabetic drugs. Its characterization in the heart has opened new fields of investigations for the understanding of the cardiac adrenergic regulation. This review describes the cardiac electrical and mechanical effects induced by Beta3-adrenoceptor stimulation in different species (including human), as well as the signaling pathway. It also analyzes the role of these receptors in the abnormal responsiveness of catecholamines in heart failure.  相似文献   
3.
The main objective of this study was to assess the in vitro effects of curcuminoids extract, hydrolyzed collagen and green tea extract in normal bovine chondrocytes and osteoarthritic human chondrocytes cultured in monolayer. This study also investigated the synergic or additive effects of these compounds. Enzymatically isolated primary bovine or human chondrocytes were cultured in monolayer until confluence and then incubated for 24 hours or 48 hours in the absence or in the presence of interleukin-1β and with or without curcuminoids extract, hydrolyzed collagen or green tea extract, added alone or in combination, at different concentrations. Cell viability was neither affected by these compounds, nor by interleukin 1β. In the absence of interleukin-1β, compounds did not significantly affect bovine chondrocytes metabolism. In human chondrocytes and in the absence of interleukin 1β, curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract significantly inhibited matrix metalloproteinase-3 production. In interleukin-1β-stimulated bovine chondrocytes, interleukin-6, inducible nitric oxide synthase, cyclooxygenase2, matrix metalloproteinase 3, a disintegrin and metalloproteinase with thrombospondin type I motifs 4 and a disintegrin and metalloproteinase with thrombospondin type I motifs 5 expressions were decreased by curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract. The combination of the three compounds was significantly more efficient to inhibit interleukin-1β stimulated matrix metalloproteinase-3 expression than curcuminoids extract alone. In interleukin-1β-stimulated human chondrocytes, nitric oxide, interleukin-6 and matrix metalloproteinase 3 productions were significantly reduced by curcuminoids extract alone or in combination with hydrolyzed collagen and green tea extract. These findings indicate that a mixture of curcuminoids extract, hydrolyzed collagen and green tea extract has beneficial effects on chondrocytes culture in inflammatory conditions and provide a preclinical basis for the in vivo testing of this mixture.  相似文献   
4.
Anticancer therapies, such as targeting of STAT3 or the use of anthracyclins (doxorubicin), can induce cardiomyopathy. In mice prone to developing heart failure as a result of reduced cardiac STAT3 expression (cardiomyocyte-restricted deficiency of STAT3) or treatment with doxorubicin, we observed impaired endothelial differentiation capacity of Sca-1(+) cardiac progenitor cells (CPCs) in conjunction with attenuated CCL2/CCR2 activation. Mice in both models also displayed reduced erythropoietin (EPO) levels in the cardiac microenvironment. EPO binds to CPCs and seems to be responsible for maintaining an active CCL2/CCR2 system. Supplementation with the EPO derivative CERA in a hematocrit-inactive low dose was sufficient to upregulate CCL2, restore endothelial differentiation of CPCs, and preserve the cardiac microvasculature and cardiac function in both mouse models. Thus, low-dose EPO treatment could potentially be exploited as a therapeutic strategy to reduce the risk of heart failure in certain treatment regimens.  相似文献   
5.
Impaired nitric oxide (NO)–dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme) may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR) spectroscopy to identify the 5-coordinate α-HbNO (HbNO) concentration in human erythrocytes and examined its correlation with endothelial function assessed by peripheral arterial tonometry (PAT). Changes in digital pulse amplitude were measured by PAT during reactive hyperemia following brachial arterial occlusion in a group of healthy volunteers (50 subjects). Erythrocyte HbNO levels were measured at baseline and at the peak of hyperemia. We digitally subtracted an individual model EPR signal of erythrocyte free radicals from the whole EPR spectrum to unmask and quantitate the HbNO EPR signals.

Results

Mean erythrocyte HbNO concentration at baseline was 219+/−12 nmol/L (n = 50). HbNO levels and reactive hyperemia (RH) indexes were higher in female (free of contraceptive pills) than male subjects. We observed a dynamic increase of HbNO levels in erythrocytes isolated at 1–2 min of post-occlusion hyperemia (120+/−8% of basal levels); post-occlusion HbNO levels were correlated with basal levels. Both basal and post-occlusion HbNO levels were significantly correlated with reactive hyperemia (RH) indexes (r = 0.58; P<0.0001 for basal HbNO).

Conclusion

The study demonstrates quantitative measurements of 5-coordinate α-HbNO in human venous erythrocytes, its dynamic physiologic regulation and correlation with endothelial function measured by tonometry during hyperemia. This opens the way to further understanding of in vivo determinants of NO bioavailability in human circulation.  相似文献   
6.

Background

We have previously demonstrated that a mixture of Curcuminoids extract, hydrolyzed COllagen and green Tea extract (CCOT) inhibited inflammatory and catabolic mediator’s synthesis by bovine and human chondrocytes. A randomly allocated, double-blind, prospective, placebo-controlled study was performed to evaluate the efficacy of a diet containing this CCOT mixture on dogs with naturally occurring osteoarthritis (OA). Therefore, 42 owner’s dogs with OA were randomly assigned to receive for 3 months an experimental diet (control) or the same diet supplemented with CCOT.

Results

Ground reaction forces did not show statistical differences between groups. After 3 months of feeding, there was a significant reduction of pain at manipulation in the CCOT group, but not in the control group. The evolution for pain at manipulation depended on the diet. The three other parameters evaluated by veterinary subjective assessment (lameness, pain at palpation and joint mobility) did not show statistical differences. Concerning owner subjective assessment, pain severity score worsened in the control group but remained stable in CCOT group. The evolution for pain severity depended on the diet. No statistical difference was found for pain interference, except for the ability to rise to standing from lying down, which was significantly improved in the CCOT compared to the control group. Serum OA biomarkers did not show statistical differences.

Conclusions

Objective variables measured, such as ground reaction forces and OA biomarkers, did not show statistical differences. However, indicators of pain appeared reduced in dogs receiving CCOT mixture for 3 months. The difference of evolution between groups suggests that a greater number of dogs may be necessary to reach a stronger effect on other parameters.
  相似文献   
7.
8.
Vascular endothelial growth factor (VEGF) exerts its angiogenic effects partly through the activation of endothelial nitric-oxide synthase (eNOS). Association with heat shock protein 90 (hsp90) and phosphorylation by Akt were recently shown to separately activate eNOS upon VEGF stimulation in endothelial cells. Here, we examined the interplay between these different mechanisms in VEGF-exposed endothelial cells. We documented that hsp90 binding to eNOS is, in fact, the crucial event triggering the transition from the Ca(2+)-dependent activation of eNOS to the phosphorylation-mediated potentiation of its activity by VEGF. Accordingly, we showed that early VEGF stimulation first leads to the Ca(2+)/calmodulin disruption of the caveolin-eNOS complex and promotes the association between eNOS and hsp90. eNOS-bound hsp90 can then recruit VEGF-activated (phosphorylated) Akt to the complex, which in turn can phosphorylate eNOS. Further experiments in transfected COS cells expressing either wild-type or S1177A mutant eNOS led us to identify the serine 1177 as the critical residue for the hsp90-dependent Akt-mediated activation of eNOS. Finally, we documented that although the VEGF-induced phosphorylation of eNOS leads to a sustained production of NO independently of a maintained increase in [Ca(2+)](i), this late stage of eNOS activation is strictly conditional on the initial VEGF-induced Ca(2+)-dependent stimulation of the enzyme. These data establish the critical temporal sequence of events leading to the sustained activation of eNOS by VEGF and suggest new ways of regulating the production of NO in response to this cytokine through the ubiquitous chaperone protein, hsp90.  相似文献   
9.
In cardiac myocytes, agonist binding to muscarinic acetylcholine receptors (mAchRs) leads to the targeting of stimulated receptors to plasmalemmal microdomains termed caveolae. Here, we examined whether this translocation leads to mAchR internalization and alteration in downstream NO signaling. Differential binding of membrane-permeant and -impermeant mAchR radioligands on caveolae-enriched membranes revealed that carbachol stimulation of cardiac myocytes induces sequestration of mAchRs through caveolae fission. GTP but not its non-hydrolyzable analog GTP gamma S drove the further detachment of caveolae from myocyte sarcolemma. Also, incubation of extracts of carbachol-stimulated myocytes with recombinant GTPase dynamin induced mAchR sequestration in budded caveolae, while dominant-negative K44A dynamin inhibited it. These data were confirmed by immunofluorescence microscopy on m2 mAchR-expressing COS cells. Finally, repeated carbachol stimulations of mAchRs co-expressed in COS cells with endothelial nitric oxide synthase (eNOS) and wild-type, but not mutant, dynamin led to a progressive increase in mAchR sequestration and a concurrent stabilization of the inhibitory eNOS-caveolin complex. These findings emphasize the role of caveolae in mAchR trafficking and NO signaling, and suggest that caveolae fission may contribute to G-protein-coupled receptor desensitization.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号