首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The current treatment of botulism is to administer animal-derived antitoxin, which frequently causes severe adverse reactions in the recipients. In this study, a heavy chain antibody fragment (VH/VHH) phage display library was constructed by amplification of the immunoglobulin genes of a nonimmune camel, Camelus dromedarius, using primers specific to human VH gene segments. A recombinant light chain of type A botulinum toxin, BoTxA/LC, with zinc endoprotease activity was used in phage bio-panning to select phage clones displaying BoTxA/LC-bound VH/VHH. Soluble VH/VHH were produced and purified from 10 VH/VHH phagemid-transformed E. coli clones. Complementary determining regions (CDRs) and immunoglobulin frameworks (FRs) of the 10 camel VH/VHH-deduced amino acid sequences were determined. FR2 sequences of two clones showed a hallmark of camel VHH, i.e. (F/Y)42E49R50(G/F)52. The remaining eight clones had an FR2 amino acid tetrad of conventional VH, i.e. V42G49L50W52. VHH of one clone (VHH17) neutralized the SNAP25 hydrolytic activity of BoTxA/LC, whereas mouse polyclonal anti-BoTxA/LC did not have such activity. Mimotope sequences of VHH17 matched with the 194–206 amino acid residues of BoTxA/LC, which are located near the S′1 subsite of the catalytic cleft of the enzyme. Molecular docking revealed that CDR3 of the VHH17 bound to epitope in the toxin enzymatic cleft. Therefore, the BoTxA/LC neutralization by the VHH17 should be due to the VHH insertion into the enzymatic cleft of the toxin, which is usually inaccessible to a conventional antibody molecule. This antibody fragment warrants further development as a therapeutic agent for botulism.  相似文献   
2.
A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV''s NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.  相似文献   
3.
NS5B is pivotal RNA dependent RNA polymerase (RdRp) of HCV and NS5B function interfering halts the virus infective cycle. This work aimed to produce cell penetrable humanized single domain antibodies (SdAb; VH/VHH) that interfere with the RdRp activity. Recombinant NS5BΔ55 of genotype 3a HCV with de novo RNA synthetic activity was produced and used in phage biopanning for selecting phage clones that displayed NS5BΔ55 bound VH/VHH from a humanized-camel VH/VHH display library. VH/VHH from E. coli transfected with four selected phage clones inhibited RdRp activity when tested by ELISA inhibition using 3′di-cytidylate 25 nucleotide directed in vitro RNA synthesis. Deduced amino acid sequences of two clones showed VHH hallmark and were designated VHH6 and VHH24; other clones were conventional VH, designated VH9 and VH13. All VH/VHH were linked molecularly to a cell penetrating peptide, penetratin. The cell penetrable VH9, VH13, VHH6 and VHH24 added to culture of Huh7 cells transfected with JHF-1 RNA of genotype 2a HCV reduced the amounts of RNA intracellularly and in culture medium implying that they inhibited the virus replication. VH/VHH mimotopes matched with residues scattered on the polymerase fingers, palm and thumb which were likely juxtaposed to form conformational epitopes. Molecular docking revealed that the antibodies covered the RdRp catalytic groove. The transbodies await further studies for in vivo role in inhibiting HCV replication.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号