首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2019年   1篇
  2017年   1篇
  2014年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1977年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
2.
Muscle wasting accompanies diseases that are associated with chronic elevated levels of circulating inflammatory cytokines and oxidative stress. We previously demonstrated that tumor necrosis factor-alpha (TNF-alpha) inhibits myogenic differentiation via the activation of nuclear factor-kappaB (NF-kappaB). The goal of the present study was to determine whether this process depends on the induction of oxidative stress. We demonstrate here that TNF-alpha causes a decrease in reduced glutathione (GSH) during myogenic differentiation of C(2)C(12) cells, which coincides with an elevated generation of reactive oxygen species. Supplementation of cellular GSH with N-acetyl-l-cysteine (NAC) did not reverse the inhibitory effects of TNF-alpha on troponin I promoter activation and only partially restored creatine kinase activity in TNF-alpha-treated cells. In contrast, the administration of NAC before treatment with TNF-alpha almost completely restored the formation of multinucleated myotubes. NAC decreased TNF-alpha-induced activation of NF-kappaB only marginally, indicating that the redox-sensitive component of the inhibition of myogenic differentiation by TNF-alpha occurred independently, or downstream of NF-kappaB. Our observations suggest that the inhibitory effects of TNF-alpha on myogenesis can be uncoupled in a redox-sensitive component affecting myotube formation and a redox independent component affecting myogenic protein expression.  相似文献   
3.
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (.NO2) and peroxynitrite (ONOO-). Classically known as a major component of both indoor and outdoor air pollution, .NO2 is a toxic free radical gas. .NO2 can also be formed during inflammation by the decomposition of ONOO- or through peroxidase-catalyzed reactions. Due to their reactive nature, RNS may play an important role in disease pathology. Depending on the dose and the duration of administration, .NO, has been documented to cause pulmonary injury in both animal and human studies. Injury to the lung epithelial cells following exposure to .NO2 is characterized by airway denudation followed by compensatory proliferation. The persistent injury and repair process may contribute to airway remodeling, including the development of fibrosis. To better understand the signaling pathways involved in epithelial cell death by .NO2 or otherRNS, we routinely expose cells in culture to continuous gas-phase .NO2. Studies using the .NO2 exposure system revealed that lung epithelial cell death occurs in a density dependent manner. In wound healing experiments, .NO2 induced cell death is limited to cells localized in the leading edge of the wound. Importantly, .NO2-induced death does not appear to be dependent on oxidative stress per se. Potential cell signaling mechanisms will be discussed, which include the mitogen activated protein kinase, c-Jun N-terminal Kinase and the Fas/Fas ligand pathways. During periods of epithelial loss and regeneration that occur in diseases such as asthma or during lung development, epithelial cells in the lung may be uniquely susceptible to death. Understanding the molecular mechanisms of epithelial cell death associated with the exposure to .NO2 will be important in designing therapeutics aimed at protecting the lung from persistent injury and repair.  相似文献   
4.
5.
Protein-S-glutathionylation (PSSG) is an oxidative modification of reactive cysteines that has emerged as an important player in pathophysiological processes. Under physiological conditions, the thiol transferase, glutaredoxin-1 (Glrx1) catalyses deglutathionylation. Although we previously demonstrated that Glrx1 expression is increased in mice with allergic inflammation, the impact of Glrx1/PSSG in the development of allergic airways disease remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 in the pathogenesis of allergic inflammation and airway hyperresponsiveness (AHR) in mice. Glrx1(-/-) or WT mice were subjected to the antigen, ovalbumin (OVA), and parameters of allergic airways disease were evaluated 48 h after three challenges, and 48 h or 7 days after six challenges with aerosolized antigen. Although no clear increases in PSSG were observed in WT mice in response to OVA, marked increases were detected in lung tissue of mice lacking Glrx1 48 h following six antigen challenges. Inflammation and expression of proinflammatory mediators were decreased in Glrx1(-/-) mice, dependent on the time of analysis. WT and Glrx1(-/-) mice demonstrated comparable increases in AHR 48 h after three or six challenges with OVA. However, 7 days postcessation of six challenges, parameters of AHR in Glrx1(-/-) mice were resolved to control levels, accompanied by marked decreases in mucus metaplasia and expression of Muc5AC and GOB5. These results demonstrate that the Glrx1/S-glutathionylation redox status in mice is a critical regulator of AHR, suggesting that avenues to increase S-glutathionylation of specific target proteins may be beneficial to attenuate AHR.  相似文献   
6.
Pulmonary inflammation in asthma is orchestrated by the activity of NF-kappaB. NO and NO synthase (NOS) activity are important modulators of inflammation. The availability of the NOS substrate, l-arginine, is one of the mechanisms that controls the activity of NOS. Arginase also uses l-arginine as its substrate, and arginase-1 expression is highly induced in a murine model of asthma. Because we have previously described that arginase affects NOx content and interferes with the activation of NF-kappaB in lung epithelial cells, the goal of this study was to investigate the impact of arginase inhibition on the bioavailability of NO and the implications for NF-kappaB activation and inflammation in a mouse model of allergic airway disease. Administration of the arginase inhibitor BEC (S-(2-boronoethyl)-l-cysteine) decreased arginase activity and caused alterations in NO homeostasis, which were reflected by increases in S-nitrosylated and nitrated proteins in the lungs from inflamed mice. In contrast to our expectations, BEC enhanced perivascular and peribronchiolar lung inflammation, mucus metaplasia, NF-kappaB DNA binding, and mRNA expression of the NF-kappaB-driven chemokine genes CCL20 and KC, and lead to further increases in airways hyperresponsiveness. These results suggest that inhibition of arginase activity enhanced a variety of parameters relevant to allergic airways disease, possibly by altering NO homeostasis.  相似文献   
7.
8.
Skeletal muscle atrophy is a prominent and disabling feature of chronic wasting diseases. Prevention or reversal of muscle atrophy by administration of skeletal muscle growth (hypertrophy)-stimulating agents such as insulin-like growth factor I (IGF-I) could be an important therapeutic strategy in these diseases. To elucidate the IGF-I signal transduction responsible for muscle formation (myogenesis) during muscle growth and regeneration, we applied IGF-I to differentiating C2C12 myoblasts and evaluated the effects on phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3 (GSK-3) signaling and myogenesis. IGF-I caused phosphorylation and inactivation of GSK-3 activity via signaling through the PI3K/Akt pathway. We assessed whether pharmacological inhibition of GSK-3 with lithium chloride (LiCl) was sufficient to stimulate myogenesis. Addition of IGF-I or LiCl stimulated myogenesis, evidenced by increased myotube formation, muscle creatine kinase (MCK) activity, and troponin I (TnI) promoter transactivation during differentiation. Moreover, mRNAs encoding MyoD, Myf-5, myogenin, TnI-slow, TnI-fast, MCK, and myoglobin were upregulated in myoblasts differentiated in the presence of IGF-I or LiCl. Importantly, blockade of GSK-3 inhibition abrogated IGF-I- but not LiCl-dependent stimulation of myogenic mRNA accumulation, suggesting that the promyogenic effects of IGF-I require GSK-3 inactivation and revealing an important negative regulatory role for GSK-3 in myogenesis. Therefore, this study identifies GSK-3 as a potential target for pharmacological stimulation of muscle growth. insulin-like growth factor I; muscle hypertrophy  相似文献   
9.
In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase. In these studies, we sought to determine the effects of NO2 exposure on mice with ongoing allergic airway disease pathology. Mice were sensitized and challenged with the antigen ovalbumin (OVA) to generate airway inflammation and subsequently exposed to 5 or 25 ppm NO2 for 3 days or 5 days followed by a 20-day recovery period. Whereas 5 ppm NO2 elicited no pathological changes, inhalation of 25 ppm NO2 alone induced acute lung injury, which peaked after 3 days and was characterized by increases in protein, LDH, and neutrophils recovered by BAL, as well as lesions within terminal bronchioles. Importantly, 25 ppm NO2 was also sufficient to cause AHR in mice, a cardinal feature of asthma. The inflammatory changes were ameliorated after 5 days of inhalation and completely resolved after 20 days of recovery after the 5-day inhalation. In contrast, in mice immunized and challenged with OVA, inhalation of 25 ppm NO2 caused a marked augmentation of eosinophilic inflammation and terminal bronchiolar lesions, which extended significantly into the alveoli. Moreover, 20 days postcessation of the 5-day 25 ppm NO2 inhalation regimen, eosinophilic and neutrophilic inflammation, pulmonary lesions, and AHR were still present in mice immunized and challenged with OVA. Collectively, these observations suggest an important role for NO2 in airway pathologies associated with asthma, both in modulation of degree and duration of inflammatory response, as well as in induction of AHR.  相似文献   
10.
Binding of tumor necrosis factor-alpha (TNFalpha) to its receptor, TNF-R1, results in the activation of inhibitor of kappaB kinase (IKK) and c-Jun N-terminal kinase (JNK) pathways that are coordinately regulated and important in survival and death. We demonstrated previously that in response to hydrogen peroxide (H2O2), the ability of TNFalpha to activate IKK in mouse lung epithelial cells (C10) was inhibited and that H2O2 alone was sufficient to activate JNK and induce cell death. In the current study, we investigated the involvement of TNF-R1 in H2O2-induced JNK activation. In lung fibroblasts from TNF-R1-deficient mice the ability of H2O2 to activate JNK was inhibited compared with fibroblasts from control mice. Additionally, in C10 cells expressing a mutant form of TNF-R1, H2O2-induced JNK activation was also inhibited. Immunoprecipitation of TNF-R1 revealed that in response to H2O2, the adapter proteins, TRADD and TRAF2, and JNK were recruited to the receptor. However, expression of the adaptor protein RIP, which is essential for IKK activation by TNFalpha, was decreased in cells exposed to H2O2, and its chaperone Hsp90 was cleaved. Furthermore, data demonstrating that expression of TRAF2 was not affected by H2O2 and that overexpression of TRAF2 was sufficient to activate JNK provide an explanation for the inability of H2O2 to activate IKK and for the selective activation of JNK by H2O2. Our data demonstrate that oxidative stress interferes with IKK activation while promoting JNK signaling, creating a signaling imbalance that may favor apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号