首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   45篇
  国内免费   3篇
  2023年   6篇
  2022年   5篇
  2021年   19篇
  2020年   21篇
  2019年   29篇
  2018年   15篇
  2017年   11篇
  2016年   21篇
  2015年   27篇
  2014年   28篇
  2013年   34篇
  2012年   38篇
  2011年   27篇
  2010年   22篇
  2009年   26篇
  2008年   18篇
  2007年   21篇
  2006年   13篇
  2005年   19篇
  2004年   24篇
  2003年   23篇
  2002年   17篇
  2001年   6篇
  2000年   14篇
  1999年   10篇
  1998年   11篇
  1997年   5篇
  1996年   10篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1979年   5篇
  1977年   2篇
  1976年   2篇
  1974年   7篇
  1970年   2篇
  1969年   4篇
  1968年   2篇
  1967年   4篇
  1948年   1篇
排序方式: 共有607条查询结果,搜索用时 46 毫秒
1.
2.
3.
The ferric enterobactin receptor protein, FepA, was isolated and purified from the outer membranes of a genetically transformed strain of Escherichia coli (UT5600/pBB2) using anion-exchange chromatography, chromatofocusing and gel filtration. The purified protein was found to crystallize from 25 mM sodium phosphate buffer in the presence of 0.8% beta-D-octylglucoside under a range of conditions. The protein formed mostly small rods and needle-shaped crystals in the hanging drop method.  相似文献   
4.
A Pseudomonas cepacia, designated strain BRI6001, was isolated from peat by enrichment culture using 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. BRI6001 grew at up to 13 mM 2,4-D, and degraded 1 mM 2,4-D at an average starting population density as low as 1.5 cells/ml. Degradation was optimal at acidic pH, but could also be inhibited at low pH, associated with chloride release from the substrate, and the limited buffering capacity of the growth medium. The only metabolite detected during growth on 2,4-D was 2,4-dichlorophenol (2,4-DCP), and degradation of the aromatic nucleus was by intradiol cleavage. Growth lag times prior to the on-set of degradation, and the total time required for degradation, were linearly related to the starting population density and the initial 2,4-D concentration. BRI6001, grown on 2,4-D, oxidized a variety of structurally similar chlorinated aromatic compounds accompanied by stoichiometric chloride release.  相似文献   
5.
The kinetics of the uptake of Fe(II)-histidinate, a known promoter of lipid peroxidation, into Ehrlich ascites tumor (EAT) cells and the intracellular binding of iron were studied in vitro. EAT cells (27.10(6)/ml) were incubated in Hanks' balanced salts solution at 37 degrees C for various time intervals in the presence of FeSO4 (1 mM) and L-histidine (10 mM). Total iron was determined by the 1,10-phenanthroline/ascorbate method and ferric iron by reaction with 5-sulfosalicylic acid; the difference was ascribed to ferrous iron. Total iron decreased rapidly in the medium (242 nmol within the first 10 min), and a corresponding increase of total iron (saturation value 376 nmol after 60 min) was determined within the cells, after the cellular proteins had been solubilized with 6 M urea. In the absence of EAT cells, Fe(II)-histidinate was readily oxidized to Fe(III)-histidinate by oxygen, but this reaction was strongly retarded by the tumor cells. The uptake of iron histidinate occurred in the oxidized state, while an uptake of ferrous iron could not be proven unambiguously. When EAT cells were saturated with iron, it was found that 93% of intracellular iron was bound to water-insoluble proteins and 7% was associated with soluble proteins, while no unbound iron was detectable by the method used. It was concluded that, despite the high uptake of total iron, only a very small portion of the intracellular iron was available as a redox catalyst for lipid peroxidation.  相似文献   
6.
Recognition of ferric siderophores in Neurospora crassa was found to depend on the number and kind of N-acyl residues that surrounded the iron coordination center. In the coprogen series, uptake decreased in the order of coprogen, neocoprogen I, and neocoprogen II, indicating that gradual replacement of the N-transanhydromevalonyl groups by N-acetyl groups had an adverse effect on uptake. The reverse effect was observed in the ferrichrome series, where uptake decreased in the order of ferrichrysin, asperchrome D1, asperchrome B1, and ferrirubin. Configuration of the anhydromevalonyl group (cis or trans) in ferrichromes was also an important determinant in the recognition process. On the basis of uptake and inhibition studies, it is proposed that in ferrichromes part of the molecule (iron configuration and the N-acyl groups) is responsible for binding, whereas another (cyclic peptide ring) is involved in the subsequent process of transport.  相似文献   
7.
8.
9.
InSaccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by theCSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized aCSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomyceteNeurospora crassa and have used a reverse genetics approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of aN. crassa gene (designatedchs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those ofS. cerevisiae andCandida albicans. N. crassa strains in whichchs-4 had been inactivated by the Repeat-Induced Point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in thechs-4 RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme inN. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.A. Beth Din and C. A. Specht contributed equally to this work  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号