首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
排序方式: 共有11条查询结果,搜索用时 78 毫秒
1.
Plant Molecular Biology Reporter - The affiliation 2 in the published article was Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785,006, India.  相似文献   
2.
Microsatellites are the markers of choice due to their high abundance reproducibility, degree of polymorphism and co-dominant nature. These are mainly used for studying the genetic variability in different species and Marker assisted selection. Expressed Sequence Tags (ESTs) serve as the main resource for Simple Sequence Repeats (SSRs). The computational approach for detecting SSRs and developing SSR markers from EST-SSRs is preferred over the conventional methods as it reduces time and cost to a great extent. The available EST sequence databases, various web interfaces and standalone tools provide the platform for an easy analysis of the EST sequences leading to the development of potential EST-SSR Markers. This paper is an overview of in silico approach to develop SSR Markers from the EST sequence using some of the most efficient tools that are available freely for academic purpose.  相似文献   
3.
Glutathione synthetase (gshB) has previously been reported to confer tolerance to acidic soil condition in Rhizobium species. Cloning the gene coding for this enzyme necessitates the designing of proper primer sets which in turn depends on the identification of high quality sequence similarity in multiple global alignments. In this experiment, a group of homologous gene sequences related to gshB gene (accession no: gi-86355669:327589-328536) of Rhizobium etli CFN 42, were extracted from NCBI nucleotide sequence databases using BLASTN and were analyzed for designing degenerate primers. However, the T-coffee multiple global alignment results did not show any block of conserved region for the above sequence set to design the primers. Therefore, we attempted to identify the location of common motif region based on multiple local alignments employing the MEME algorithm supported with MAST and Primer3. The results revealed some common motif regions that enabled us to design the primer sets for related gshB gene sequences. The result will be validated in wet lab.  相似文献   
4.
The theoretical three-dimensional structure of a novel δ-endotoxin Cry1Id (81 kDa) belonging to Cry1I class, toxic to many of the lepidopteran pests has been investigated through comparative modeling. Molecular dynamics (MD) simulations was carried out to characterize its structural and dynamical features at 10 ns in explicit solvent using the GROMACS version 4.5.4. Finally the simulated model was validated by the SAVES, WHAT IF, MetaMQAP, ProQ, ModFOLD and MolProbity servers. Despite low sequence identity with its structural homologs, Cry1Id not only resembles the previously reported Cry structures but also shares the common five conserved blocks of amino acid residues. Although the domain II of Cry1Id superpose well with its closest structural homolog Cry8Ea1, variation of amino acids and length in the apical loop2 of domain II was observed. In this work, we have hypothesized that the variations in apical loop2 might be the sole factor for providing variable surface accessibility to Cry1Id protein that could be important in receptor recognition. MD simulation showed the proposed endotoxin retains its stable conformation in aqueous solution. The result from this study is expected to aid in the development hybrid Cry proteins and new potent fusion proteins with novel specificities against different insect pests for improved pest management of crop plants.  相似文献   
5.
The NADPH-dependent HC-toxin reductases (HCTR1 and 2) encoded by enzymatic class of disease resistance homologous genes (Hm1 and Hm2) protect maize by detoxifying a cyclic tetrapeptide, HC-toxin, secreted by the fungus Cochliobolus carbonum race 1(CCR1). Unlike the other classes'' resistance (R) genes, HCTR-mediated disease resistance is an inimitable mechanism where the avirulence (Avr) component from CCR1 is not involved in toxin degradation. In this study, we attempted to decipher cofactor (NADPH) recognition and mode of HC-toxin binding to HCTRs through molecular docking, molecular dynamics (MD) simulations and binding free energy calculation methods. The rationality and the stability of docked complexes were validated by 30-ns MD simulation. The binding free energy decomposition of enzyme-cofactor complex was calculated to find the driving force behind cofactor recognition. The overall binding free energies of HCTR1-NADPH and HCTR2-NADPH were found to be −616.989 and −16.9749 kJ mol−1 respectively. The binding free energy decomposition revealed that the binding of NADPH to the HCTR1 is mainly governed by van der Waals and nonpolar interactions, whereas electrostatic terms play dominant role in stabilizing the binding mode between HCTR2 and NADPH. Further, docking analysis of HC-toxin with HCTR-NADPH complexes showed a distinct mode of binding and the complexes were stabilized by a strong network of hydrogen bond and hydrophobic interactions. This study is the first in silico attempt to unravel the biophysical and biochemical basis of cofactor recognition in enzymatic class of R genes in cereal crop maize.  相似文献   
6.
With the advent of high-throughput sequencing technology, sequences from many genomes are being deposited to public databases at a brisk rate. Open access to large amount of expressed sequence tag (EST) data in the public databases has provided a powerful platform for simple sequence repeat (SSR) development in species where sequence information is not available. SSRs are markers of choice for their high reproducibility, abundant polymorphism and high inter-specific transferability. The mining of SSRs from ESTs requires different high-throughput computational tools that need to be executed individually which are computationally intensive and time consuming. To reduce the time lag and to streamline the cumbersome process of SSR mining from ESTs, we have developed a user-friendly, web-based EST-SSR pipeline "EST-SSR-MARKER PIPELINE (ESMP)". This pipeline integrates EST pre-processing, clustering, assembly and subsequently mining of SSRs from assembled EST sequences. The mining of SSRs from ESTs provides valuable information on the abundance of SSRs in ESTs and will facilitate the development of markers for genetic analysis and related applications such as marker-assisted breeding. AVAILABILITY: The database is available for free at http://bioinfo.aau.ac.in/ESMP.  相似文献   
7.
Simple Sequence Repeats (SSRs) developed from Expressed Sequence Tags (ESTs), known as EST-SSRs are most widely used and potentially valuable source of gene based markers for their high levels of crosstaxon portability, rapid and less expensive development. The EST sequence information in the publicly available databases is increasing in a faster rate. The emerging computational approach provides a better alternative process of development of SSR markers from the ESTs than the conventional methods. In the present study, 12,851 EST sequences of Camellia sinensis, downloaded from National Center for Biotechnology Information (NCBI) were mined for the development of Microsatellites. 6148 (4779 singletons and 1369 contigs) non redundant EST sequences were found after preprocessing and assembly of these sequences using various computational tools. Out of total 3822.68 kb sequence examined, 1636 (26.61%) EST sequences containing 2371 SSRs were detected with a density of 1 SSR/1.61 kb leading to development of 245 primer pairs. These mined EST-SSR markers will help further in the study of variability, mapping, evolutionary relationship in Camellia sinensis. In addition, these developed SSRs can also be applied for various studies across species.  相似文献   
8.
9.
Superoxide dismutases (SODs), members of the metalloenzymes family are most effective intracellular enzymatic antioxidant in aerobic organisms. These enzymes provide the first line of defense in plants against the toxic effects of elevated levels of reactive oxygen species (ROS) generated during various environmental stresses. The availability of high-throughput computational tools has provided better opportunities to characterize the protein features and determine their function. In the present study an attempt was made to gain an insight into the structure and evolution of subunits of SODs (Cu-Zn, Mn and Fe SODs) of rice. The 3-Dimensional structures of SODs were modeled based on available X-ray crystal structures and further validated. The primary sequence, secondary and tertiary structure analysis revealed Mn and Fe SOD to be structurally homologous while Cu-Zn SOD is un-related to either of them. Comparative structural study also revealed former two were dominated by α-helices followed by β-strands in contrast; Cu-Zn SOD dominated by β-strands. Molecular phylogeny indicated a common evolutionary origin of Mn and Fe SOD while Cu-Zn SOD may have evolved separately.  相似文献   
10.
Glycoside hydrolase family 19 chitinases (EC 3.2.1.14) widely distributed in plants, bacteria and viruses catalyse the hydrolysis of chitin and play a major role in plant defense mechanisms and development. Rice possesses several classes of chitinase, out of which a single structure of class I has been reported in PDB to date. In the present study an attempt was made to gain more insight into the structure, function and evolution of class I, II and IV chitinases of GH family 19 from rice. The three-dimensional structures of chitinases were modelled and validated based on available X-ray crystal structures. The structural study revealed that they are highly α-helical and bilobed in nature. These enzymes are single or multi domain and multi-functional in which chitin-binding domain (CBD) and catalytic domain (CatD) are present in class I and IV whereas class II lacks CBD. The CatD possesses a catalytic triad which is thought to be involved in catalytic process. Loop III, which is common in all three classes of chitinases, reflects that it may play a significant role in their function. Our study also confirms that the absence and presence of different loops in GH family 19 of rice may be responsible for various sized products. Molecular phylogeny revealed chitinases in monocotyledons and dicotyledons differed from each other forming two different clusters and may have evolved differentially. More structural study of this enzyme from different plants is required to enhance the knowledge of catalytic mechanism and substrate binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号