首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1983年   1篇
  1982年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有47条查询结果,搜索用时 328 毫秒
1.
Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.  相似文献   
2.
Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species.  相似文献   
3.
The implications of transitioning to single nucleotide polymorphism (SNPs) from microsatellite markers (MSs) have been investigated in a number of population genetics studies, but the effect of genomic location on the amount of information each type of marker reveals has not been explored in detail. We developed novel SNP markers flanking 1 kb regions of 13 genic (within gene or <1 kb away from gene) and 13 nongenic (>10 kb from annotated gene) MSs in the threespine stickleback genome to obtain comparable data for both types of markers. We analysed patterns of genetic diversity and divergence on various geographic scales after converting the SNP loci within each genomic region into haplotypes. Marker type (SNP haplotype or MS) and location (genic or nongenic) significantly affected most estimates of population diversity and divergence. Between‐lineage divergence was significantly higher in SNP haplotypes (genic and nongenic), however, within‐lineage divergence was similar between marker types. Most divergence and diversity measures were uncorrelated between markers, except for population differentiation which was correlated between MSs and SNP haplotypes (both genic and nongenic). Broad‐scale population structure and assignment were similarly resolved by both marker types, however, only the MSs were able to delimit fine‐scale population structuring, particularly when genic and nongenic markers were combined. These results demonstrate that estimates of genetic variability and differentiation among populations can be strongly influenced by marker type, their genomic location in relation to genes and by the interaction of these two factors. This highlights the importance of having an awareness of the inherent strengths and limitations associated with different molecular tools to select the most appropriate methods for accurately addressing various ecological and evolutionary questions.  相似文献   
4.
The study presents a screening method used to identify the influential parameters of a lower limb model including ligaments, at low numerical cost. Concerning multibody kinematics optimisation, the ligament parameters (isometric length) were found the most influential ones in a previous study. The screening method tested if they remain influential with minimised length variations. The most important parameters for tibiofemoral kinematics were the skin markers, segment lengths and joint parameters, including two ligaments. This was confirmed by a quantitative sensitivity analysis. The screening method has the potential to be used as a stand-alone procedure for a sensitivity analysis.  相似文献   
5.
6.
More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15°C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration × contact time (CT) values (mg·min/liter) required to achieve 2-, 3-, and 4-log10 reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log10 CT values at 5°C ranging from ≤0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log10 CT values at 5°C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15°C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA''s Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans.Disinfection processes are critical for the reduction of infectious virus concentrations in source water, because viruses are less efficiently removed by primary treatment of drinking water (e.g., coagulation and filtration) than are other pathogen types of concern (e.g., bacteria and protozoa). Over the years, many disinfection studies have focused on the inactivation of viruses in purified and buffered, demand-free, reagent-grade water (RGW). However, relatively few investigators have examined the impact of water quality during the disinfection process, even though water quality has been found to be a significant factor for inactivation of viruses.Several researchers found that the inactivation rate of poliovirus by free chlorine increased as the ionic concentration of water increased. In one study, poliovirus 1 was inactivated three times faster in boric acid buffer than in purified water (3). In addition, several investigators found that when the ionic content of buffered water was raised by the addition of NaCl or KCl, poliovirus 1 was inactivated two to four times faster than in the buffered water alone (2, 16, 17). In another study, poliovirus 1 was inactivated 10 times more rapidly in drinking water than in purified water (4).Studies conducted with natural waters have demonstrated both increased and decreased disinfection efficacy of chlorine in these waters compared to purified or buffered waters. In a study comparing chlorine disinfection in purified water and Potomac estuarine water, coxsackievirus A9 was inactivated more rapidly in the source water. The remaining study viruses (coxsackievirus B1, echovirus 7, adenovirus 3, poliovirus 1, and reovirus 3) were all inactivated more slowly in the source water (13). Bacteriophage MS2 was inactivated more slowly by free chlorine in two types of surface water than in buffered, demand-free water. However, there was no difference between the inactivation rates of this virus in the buffered water and groundwater (10). In another study, both feline calicivirus and adenovirus 40 were inactivated more slowly in treated groundwater than in buffered, demand-free water (21).The United States Environmental Protection Agency''s (USEPA) Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources (Guidance Manual) recommends disinfectant concentration × contact time (CT) values of 4, 6, and 8 to achieve 2-, 3-, and 4-log10 inactivation, respectively, with chlorine at 5°C and pH 6 to 9 (23). These CT values, which incorporate a safety factor of 3, were obtained from inactivation experiments conducted with monodispersed hepatitis A virus (HAV) in buffered, demand-free water. As water quality can significantly affect the disinfection efficacy of chlorine, it is unclear whether these CT value recommendations are sufficient for inactivation of viruses in source water. More information is needed to systematically examine the role of water quality in chlorine disinfection of viruses.The objective of the present study was to examine the disinfection efficacy of free chlorine on selected viruses from USEPA''s Contaminant Candidate List (CCL) (22) in one untreated and two partially treated source waters from distinct geographical regions. By comparing the efficacy of chlorine disinfection in the source water types to disinfection in buffered, chlorine-demand-free RGW (7), the impact of water quality could be examined. The four representative CCL viruses selected for this study included human adenovirus 2 (HAdV2), echovirus 1 (E1), coxsackievirus B5 (CVB5), and murine norovirus (MNV), a surrogate for human norovirus (22). The viruses were selected because they were previously found to be the least effectively inactivated viruses of their type in RGW (6). Disinfection experiments were carried out in duplicate in pH 7 and 8 source water at 5 and 15°C using 0.2 and 1 mg/liter free chlorine. Inactivation curves were plotted using Microsoft Excel, and CT values were calculated using the efficiency factor Hom (EFH) model (9).  相似文献   
7.
ABSTRACT: BACKGROUND: Artemisinin-based combination therapy (ACT) has been promoted as a means to reduce malaria transmission due to their ability to kill both asexual blood stages of malaria parasites, which sustain infections over long periods and the immature derived sexual stages responsible for infecting mosquitoes and onward transmission. Early studies reported a temporal association between ACT introduction and reduced malaria transmission in a number of ecological settings. However, these reports have come from areas with low to moderate malaria transmission, been confounded by the presence of other interventions or environmental changes that may have reduced malaria transmission, and have not included a comparison group without ACT. This report presents results from the first large-scale observational study to assess the impact of case management with ACT on population-level measures of malaria endemicity in an area with intense transmission where the benefits of effective infection clearance might be compromised by frequent and repeated re-infection. METHODS: A pre-post observational study with a non-randomized comparison group was conducted at two sites in Tanzania. Both sites used sulphadoxine-pyrimethamine (SP) monotherapy as a first-line anti-malarial from mid-2001 through 2002. In 2003, the ACT, artesunate (AS) coadministered with SP (AS + SP), was introduced in all fixed health facilities in the intervention site, including both public and registered non-governmental facilities. Population-level prevalence of Plasmodium falciparum asexual parasitaemia and gametocytaemia were assessed using light microscopy from samples collected during representative household surveys in 2001, 2002, 2004, 2005 and 2006. FINDINGS: Among 37,309 observations included in the analysis, annual asexual parasitaemia prevalence in persons of all ages ranged from 11% to 28% and gametocytaemia prevalence ranged from <1% to 2% between the two sites and across the five survey years. Amultivariable logistic regression model was fitted to adjust for age, socioeconomic status, bed net use and rainfall. In the presence of consistently high coverage and efficacy of SP monotherapy and AS + SP in the comparison and intervention areas, the introduction of ACT in the intervention site was associated with a modest reduction in the adjusted asexual parasitaemia prevalence of 5 percentage-points or 23% (p < 0.0001) relative to the comparison site. Gametocytaemia prevalence did not differ significantly (p = 0.30). Interpretation The introduction of ACT at fixed health facilities only modestly reduced asexual parasitaemia prevalence. ACT is effective for treatment of uncomplicated malaria and should have substantial public health impact on morbidity and mortality, but is unlikely to reduce malaria transmission substantially in much of sub-Saharan Africa where individuals are rapidly reinfected.  相似文献   
8.
The innate antiviral response is mediated, at least in part, by Toll-like receptors (TLRs). TLR3 signaling is activated in response to viral infection, and the absence of TLR3 in mice significantly increases mortality after infection with enteroviruses that cause myocarditis and/or dilated cardiomyopathy. We screened TLR3 in patients diagnosed with enteroviral myocarditis/cardiomyopathy and identified a rare variant in one patient as well as a significantly increased occurrence of a common polymorphism compared with controls. Expression of either variant resulted in significantly reduced TLR3-mediated signaling after stimulation with synthetic double-stranded RNA. Furthermore, Coxsackievirus B3 infection of cell lines expressing mutated TLR3 abrogated activation of the type I interferon pathway, leading to increased viral replication. TLR3-mediated type I interferon signaling required cellular autophagy and was suppressed by 3-methyladenine and bafilomycin A1, by inhibitors of lysosomal proteolysis, and by reduced expression of Beclin 1, Atg5, or microtubule-associated protein 1 light chain 3β (MAP1LC3β). However, TLR3-mediated signaling was restored upon exogenous expression of Beclin 1 or a variant MAP1LC3β fusion protein refractory to RNA interference. These data suggest that individuals harboring these variants may have a blunted innate immune response to enteroviral infection, leading to reduced viral clearance and an increased risk of cardiac pathology.  相似文献   
9.
The ability to simultaneously concentrate diverse microbes is an important consideration for sample collection methods that are used for emergency response and environmental monitoring when drinking water may be contaminated with an array of unknown microbes. This study focused on developing a concentration method using ultrafilters and different combinations of a chemical dispersant (sodium polyphosphate [NaPP]) and surfactants. Tap water samples were seeded with bacteriophage MS2, Escherichia coli, Enterococcus faecalis, Cryptosporidium parvum, 4.5-μm microspheres, Salmonella enterica serovar Typhimurium, Bacillus globigii endospores, and echovirus 1. Ten-liter tap water samples were concentrated to ~250 ml in 12 to 42 min, depending on the experimental condition. Initial experiments indicated that pretreating filters with fetal bovine serum or NaPP resulted in an increase in microbe recovery. The addition of NaPP to the tap water samples resulted in significantly higher microbe and microsphere recovery efficiencies. Backflushing of the ultrafilter was found to significantly improve recovery efficiencies. The effectiveness of backflushing was improved further with the addition of Tween 80 to the backflush solution. The ultrafiltration method developed in this study, incorporating the use of NaPP pretreatment and surfactant solution backflushing, was found to recover MS2, C. parvum, microspheres, and several bacterial species with mean recovery efficiencies of 70 to 93%. The mean recovery efficiency for echovirus 1 (49%) was the lowest of the microbes studied for this method. This research demonstrates that ultrafiltration can be effective for recovering diverse microbes simultaneously in tap water and that chemical dispersants and surfactants can be beneficial for improving microbial recovery using this technique.  相似文献   
10.
Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号