首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  2021年   1篇
  2012年   1篇
  2011年   8篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1987年   2篇
  1985年   1篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
  1959年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Scots pine (Pinus sylvestris L.) seedlings were grown for 3years in the ground in open top chambers and exposed to twoconcentrations of atmospheric CO2(ambient or ambient + 400 µmol mol-1) without addition of nutrients and water. Biomassproduction (above-ground and below-ground) and allocation, aswell as canopy structure and tissue nitrogen concentrationsand contents, were examined by destructive harvest after 3 years.Elevated CO2increased total biomass production by 55%, reducedneedle area and needle mass as indicated, respectively, by lowerleaf area ratio and leaf mass ratio. A relatively smaller totalneedle area was produced in relation to fine roots under elevatedCO2. The proportion of dry matter in roots was increased byelevated CO2, as indicated by increased root-to-shoot ratioand root mass ratio. Within the root system, there was a significantshift in the allocation towards fine roots. Root litter constituteda much higher fraction of fine roots in trees grown in the elevatedCO2than in those grown in ambient CO2. Growth at elevated CO2causeda significant decline in nitrogen concentration only in theneedles, while nitrogen content significantly increased in branchesand fine roots (with diameter less than 1 mm). There were nochanges in crown structure (branch number and needle area distribution).Based upon measurements of growth made throughout the 3 years,the greatest increase in biomass under elevated CO2took placemainly at the beginning of the experiment, when trees grownin elevated CO2had higher relative growth rates than those grownunder ambient CO2; these differences disappeared with time.Symptoms of acclimation of trees to growth in the elevated CO2treatmentwere observed and are discussed. Copyright 2000 Annals of BotanyCompany Elevated CO2, Pinus sylvestris, biomass production, allocation, fine roots, root litter, crown structure, nitrogen, C/N ratio  相似文献   
2.
cDNAs encoding three proteins from barley ( Hordeum vulgare ), a class-II chitinase (CHI), a class-II β-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani , which infects a range of plant species including tobacco. To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated. Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/ CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack when compared with the protection levels obtained with corresponding isogenic lines expressing a single barley transgene to a similar level. The data indicate synergistic protective interaction of the co-expressed anti-fungal proteins in vivo .  相似文献   
3.
4.
5.
Scots pine ( Pinus sylvestris L.) trees were grown in open top chambers for three years under ambient and elevated CO2 concentrations. The trees were aged 3 y at the beginning of the CO2 exposure, and the effects of the treatment on total stem volume, stem wood biomass, wood quality and wood anatomy were examined at the end of the exposure. The elevated CO2 treatment lead to a 49% and 38% increase in stem biomass and stem wood volume, respectively. However, no significant effects of the elevated CO2 treatment on wood density were observed, neither when green wood density was estimated from stem biomass and stem volume, nor when oven-dry wood density was measured on small wood samples. Under elevated CO2 significantly wider growth rings were observed. The effect of elevated CO2 on growth ring width was primarily the result of an increase in earlywood width. Wood compression strength decreased under elevated CO2 conditions, which could be explained by significantly larger tracheids and the increased earlywood band, that has thinner walls and larger cavities. A significant decrease of the number of resin canals in the third growth ring was observed under the elevated treatment; this might indicate that trees produced and contained less resin, which has implications for disease and pest resistance. So, although wood volume yield in Scots pine increased significantly with elevated CO2 after three years of treatment, wood density remained unchanged, while wood strength decreased. Whilst wood volume and stem biomass production may increase in this major boreal forest tree species, wood quality and resin production might decrease under future elevated CO2 conditions.  相似文献   
6.
Laryngeal mucous membranes of experimental animals (Rattus rattus L. albino) which were given 25% ethyl alcohol for 4, 10 and 20 weeks was investigated using histochemical methods. It was found that tissues were considerably damaged, especially in the areas covered by stratified squamous epithelium.  相似文献   
7.
8.
9.
10.
Renata Jach 《Facies》2005,50(3-4):561-572
The Lower-Middle Jurassic of the Krína unit in the Western Tatra Mts. (southern Poland) shows considerable facies variation. Crinoidal grainstones of variable thickness (up to 12 m) are one of characteristic facies. They occur above spiculites which were deposited below storm wave base on the slopes of elevated horsts. First single beds of crinoidal limestones occur within spiculites. They were deposited as event beds, generated probably by storms. The overlying thick complex of well-sorted grainstones composed almost entirely of crinoidal ossicles display widespread erosional bed amalgamation, hummocks and locally wave-formed ripples. The above characteristics are the effects of multiple reworking and winnowing of fine crinoidal material by oscillatory currents related to storms. This proves that the sedimentation of the crinoidal grainstones took place between the storm and the fair-weather wave bases. The vertical transition from spiculites with intercalations of crinoidal limestone beds towards the crinoidal grainstones is interpreted as the result of a shallowing upward trend. Since this trend is opposite to the global Early Toarcian transgression, this could be related to an uplift due to local block tectonic activity. The evidence for that is diversification of facies in the Krína Basin, as well as submarine slumps recorded in spiculites. The location of Krína Basin on relatively low northern latitude and on western edges of great Tethys Ocean during Early Jurassic enabled the formation of the crinoidal tempestites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号